Hanna L Karlsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4604266/publications.pdf

Version: 2024-02-01

52 papers 6,221 citations

172457
29
h-index

50 g-index

52 all docs 52 docs citations

52 times ranked 8825 citing authors

#	Article	IF	CITATIONS
1	Toxicity of metal and metal oxide nanoparticles. , 2022, , 87-126.		5
2	Toxicity evaluation of particles formed during 3D-printing: Cytotoxic, genotoxic, and inflammatory response in lung and macrophage models. Toxicology, 2022, 467, 153100.	4.2	13
3	Modelled lung deposition and retention of welding fume particles in occupational scenarios: a comparison to doses used in vitro. Archives of Toxicology, 2022, 96, 969-985.	4.2	2
4	Primary and Secondary Genotoxicity of Nanoparticles: Establishing a Co-Culture Protocol for Assessing Micronucleus Using Flow Cytometry. Frontiers in Toxicology, 2022, 4, 845987.	3.1	3
5	Impact of mono-culture vs. Co-culture of keratinocytes and monocytes on cytokine responses induced by important skin sensitizers. Journal of Immunotoxicology, 2021, 18, 74-84.	1.7	5
6	Adverse Outcome Pathway Development for Assessment of Lung Carcinogenicity by Nanoparticles. Frontiers in Toxicology, 2021, 3, 653386.	3.1	22
7	Adsorption of Horseradish Peroxidase on Metallic Nanoparticles: Effects on Reactive Oxygen Species Detection Using 2′,7′-Dichlorofluorescin Diacetate. Chemical Research in Toxicology, 2021, 34, 1481-1495.	3.3	14
8	Genotoxicity and inflammatory potential of stainless steel welding fume particles: an in vitro study on standard vs Cr(VI)-reduced flux-cored wires and the role of released metals. Archives of Toxicology, 2021, 95, 2961-2975.	4.2	11
9	Gold Nanoparticles Dissolve Extracellularly in the Presence of Human Macrophages. International Journal of Nanomedicine, 2021, Volume 16, 5895-5908.	6.7	7
10	Bioaccessibility and reactivity of alloy powders used in powder bed fusion additive manufacturing. Materialia, 2021, 19, 101196.	2.7	7
11	ToxTracker Reporter Cell Lines as a Tool for Mechanism-Based (Geno)Toxicity Screening of Nanoparticlesâ€"Metals, Oxides and Quantum Dots. Nanomaterials, 2020, 10, 110.	4.1	18
12	Silver Nanoparticles Alter Cell Viability Ex Vivo and in Vitro and Induce Proinflammatory Effects in Human Lung Fibroblasts. Nanomaterials, 2020, 10, 1868.	4.1	14
13	Silver nanoparticles modulate lipopolysaccharide-triggered Toll-like receptor signaling in immune-competent human cell lines. Nanoscale Advances, 2020, 2, 648-658.	4.6	18
14	Dry Generation of CeO2 Nanoparticles and Deposition onto a Co-Culture of A549 and THP-1 Cells in Air-Liquid Interfaceâ€"Dosimetry Considerations and Comparison to Submerged Exposure. Nanomaterials, 2020, 10, 618.	4.1	27
15	Transcriptome Profiling and Toxicity Following Long-Term, Low Dose Exposure of Human Lung Cells to Ni and NiO Nanoparticles—Comparison with NiCl2. Nanomaterials, 2020, 10, 649.	4.1	18
16	High variability in toxicity of welding fume nanoparticles from stainless steel in lung cells and reporter cell lines: the role of particle reactivity and solubility. Nanotoxicology, 2019, 13, 1293-1309.	3.0	27
17	Inflammation and (secondary) genotoxicity of Ni and NiO nanoparticles. Nanotoxicology, 2019, 13, 1060-1072.	3.0	32
18	Macrophage-Assisted Dissolution of Gold Nanoparticles. ACS Applied Bio Materials, 2019, 2, 1006-1016.	4.6	28

#	Article	IF	Citations
19	RNA-sequencing reveals long-term effects of silver nanoparticles on human lung cells. Scientific Reports, 2018, 8, 6668.	3.3	68
20	Size-dependent genotoxicity of silver, gold and platinum nanoparticles studied using the mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagenesis, 2018, 33, 77-85.	2.6	65
21	Genotoxic and mutagenic properties of Ni and NiO nanoparticles investigated by comet assay, γâ€H2AX staining, <i>Hprt</i> mutation assay and ToxTracker reporter cell lines. Environmental and Molecular Mutagenesis, 2018, 59, 211-222.	2.2	64
22	Mechanistic insight into reactivity and (geno)toxicity of well-characterized nanoparticles of cobalt metal and oxides. Nanotoxicology, 2018, 12, 602-620.	3.0	46
23	Calcium-dependent cyto- and genotoxicity of nickel metal and nickel oxide nanoparticles in human lung cells. Particle and Fibre Toxicology, 2018, 15, 32.	6.2	70
24	Genotoxicity of TiO ₂ nanoparticles assessed by mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagenesis, 2017, 32, 127-137.	2.6	92
25	In vitro genotoxicity of airborne Niâ€NP in air–liquid interface. Journal of Applied Toxicology, 2017, 37, 1420-1427.	2.8	18
26	Cerium oxide nanoparticles inhibit differentiation of neural stem cells. Scientific Reports, 2017, 7, 9284.	3.3	65
27	Effects on human bronchial epithelial cells following low-dose chronic exposure to nanomaterials: A 6-month transformation study. Toxicology in Vitro, 2017, 44, 230-240.	2.4	22
28	Emerging metrology for high-throughput nanomaterial genotoxicology. Mutagenesis, 2017, 32, 215-232.	2.6	43
29	<i>In vivo</i> micronucleus screening in zebrafish by flow cytometry. Mutagenesis, 2016, 31, 643-653.	2.6	12
30	Surface passivity largely governs the bioaccessibility of nickel-based powder particles at human exposure conditions. Regulatory Toxicology and Pharmacology, 2016, 81, 162-170.	2.7	16
31	Optimization of an air–liquid interface exposure system for assessing toxicity of airborne nanoparticles. Journal of Applied Toxicology, 2016, 36, 1294-1301.	2.8	20
32	The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity. Colloids and Surfaces B: Biointerfaces, 2016, 141, 291-300.	5.0	37
33	Nickel Release, ROS Generation and Toxicity of Ni and NiO Micro- and Nanoparticles. PLoS ONE, 2016, 11, e0159684.	2.5	109
34	Next-Generation Sequencing Reveals Low-Dose Effects of Cationic Dendrimers in Primary Human Bronchial Epithelial Cells. ACS Nano, 2015, 9, 146-163.	14.6	73
35	Can the comet assay be used reliably to detect nanoparticleâ€induced genotoxicity?. Environmental and Molecular Mutagenesis, 2015, 56, 82-96.	2.2	110
36	Toxicity of Metal and Metal Oxide Nanoparticles. , 2015, , 75-112.		33

#	Article	IF	Citations
37	Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines. Particle and Fibre Toxicology, 2014, 11, 41.	6.2	86
38	Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Particle and Fibre Toxicology, 2014, 11, 11.	6.2	871
39	Cell membrane damage and protein interaction induced by copper containing nanoparticles—Importance of the metal release process. Toxicology, 2013, 313, 59-69.	4.2	222
40	Epigenetic effects of nano-sized materials. Toxicology, 2013, 313, 3-14.	4.2	112
41	Intracellular Uptake and Toxicity of Ag and CuO Nanoparticles: A Comparison Between Nanoparticles and their Corresponding Metal Ions. Small, 2013, 9, 970-982.	10.0	270
42	Microsomal Glutathione Transferase 1 Protects Against Toxicity Induced by Silica Nanoparticles but Not by Zinc Oxide Nanoparticles. ACS Nano, 2012, 6, 1925-1938.	14.6	100
43	Effect of sonication and serum proteins on copper release from copper nanoparticles and the toxicity towards lung epithelial cells. Nanotoxicology, 2011, 5, 269-281.	3.0	53
44	The comet assay in nanotoxicology research. Analytical and Bioanalytical Chemistry, 2010, 398, 651-666.	3.7	210
45	Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective. Particle and Fibre Toxicology, 2010, 7, 23.	6.2	70
46	Surface Characteristics, Copper Release, and Toxicity of Nano―and Micrometerâ€Sized Copper and Copper(II) Oxide Particles: A Crossâ€Disciplinary Study. Small, 2009, 5, 389-399.	10.0	353
47	Size-dependent toxicity of metal oxide particles—A comparison between nano- and micrometer size. Toxicology Letters, 2009, 188, 112-118.	0.8	823
48	Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chemical Research in Toxicology, 2008, 21, 1726-1732.	3.3	1,239
49	Mechanisms Related to the Genotoxicity of Particles in the Subway and from Other Sources. Chemical Research in Toxicology, 2008, 21, 726-731.	3.3	125
50	Comparison of genotoxic and inflammatory effects of particles generated by wood combustion, a road simulator and collected from street and subway. Toxicology Letters, 2006, 165, 203-211.	0.8	126
51	Subway Particles Are More Genotoxic than Street Particles and Induce Oxidative Stress in Cultured Human Lung Cells. Chemical Research in Toxicology, 2005, 18, 19-23.	3.3	268
52	Genotoxicity of airborne particulate matter: the role of cell–particle interaction and of substances with adduct-forming and oxidizing capacity. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2004, 565, 1-10.	1.7	59