
Suk-Chul Bae

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4604163/publications.pdf Version: 2024-02-01

SUK-CHUL BAF

#	Article	IF	CITATIONS
1	Causal Relationship between the Loss of RUNX3 Expression and Gastric Cancer. Cell, 2002, 109, 113-124.	28.9	957
2	Runx2 Is a Common Target of Transforming Growth Factor β1 and Bone Morphogenetic Protein 2, and Cooperation between Runx2 and Smad5 Induces Osteoblast-Specific Gene Expression in the Pluripotent Mesenchymal Precursor Cell Line C2C12. Molecular and Cellular Biology, 2000, 20, 8783-8792.	2.3	823
3	Differential Requirements for Runx Proteins in CD4 Repression and Epigenetic Silencing during T Lymphocyte Development. Cell, 2002, 111, 621-633.	28.9	672
4	The RUNX family: developmental regulators in cancer. Nature Reviews Cancer, 2015, 15, 81-95.	28.4	329
5	Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor- \hat{l}^2 and bone morphogenetic protein. Oncogene, 2002, 21, 7156-7163.	5.9	303
6	Bone Morphogenetic Protein-2 Stimulates Runx2 Acetylation. Journal of Biological Chemistry, 2006, 281, 16502-16511.	3.4	303
7	Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nature Neuroscience, 2002, 5, 946-954.	14.8	279
8	The Protein Kinase C Pathway Plays a Central Role in the Fibroblast Growth Factor-stimulated Expression and Transactivation Activity of Runx2. Journal of Biological Chemistry, 2003, 278, 319-326.	3.4	218
9	Transforming Growth Factor-β Stimulates p300-dependent RUNX3 Acetylation, Which Inhibits Ubiquitination-mediated Degradation. Journal of Biological Chemistry, 2004, 279, 29409-29417.	3.4	185
10	RUNX3 Suppresses Gastric Epithelial Cell Growth by Inducing <i>p21</i> ^{<i>WAF1</i>} ^{/<i>Cip1</i>} Expression in Cooperation with Transforming Growth Factor β-Activated SMAD. Molecular and Cellular Biology, 2005, 25, 8097-8107.	2.3	179
11	Cloning, mapping and expression of PEBP2αC, a third gene encoding the mammalian Runt domain. Gene, 1995, 159, 245-248.	2.2	165
12	The RUNX3 Tumor Suppressor Upregulates Bim in Gastric Epithelial Cells Undergoing Transforming Growth Factor1 ² -Induced Apoptosis. Molecular and Cellular Biology, 2006, 26, 4474-4488.	2.3	151
13	<i>RUNX3</i> Inactivation by Point Mutations and Aberrant DNA Methylation in Bladder Tumors. Cancer Research, 2005, 65, 9347-9354.	0.9	142
14	Phosphorylation, acetylation and ubiquitination: The molecular basis of RUNX regulation. Gene, 2006, 366, 58-66.	2.2	132
15	Transcriptional silencing of the RUNX3 gene by CpG hypermethylation is associated with lung cancer. Biochemical and Biophysical Research Communications, 2004, 314, 223-228.	2.1	121
16	DNA binding partners of YAP/TAZ. BMB Reports, 2018, 51, 126-133.	2.4	120
17	Tumor suppressor activity of RUNX3. Oncogene, 2004, 23, 4336-4340.	5.9	117
18	Runx3 Inactivation Is a Crucial Early Event in the Development of Lung Adenocarcinoma. Cancer Cell, 2013, 24, 603-616.	16.8	108

SUK-CHUL BAE

#	Article	IF	CITATIONS
19	MicroRNA-34c Inversely Couples the Biological Functions of the Runt-related Transcription Factor RUNX2 and the Tumor Suppressor p53 in Osteosarcoma. Journal of Biological Chemistry, 2013, 288, 21307-21319.	3.4	95
20	Cytoplasmic Sequestration of the Polyomavirus Enhancer Binding Protein 2 (PEBP2)/Core Binding Factor α (CBFα) Subunit by the Leukemia-Related PEBP2/CBFβ-SMMHC Fusion Protein Inhibits PEBP2/CBF-Mediated Transactivation. Molecular and Cellular Biology, 1998, 18, 4252-4261.	2.3	76
21	Methylation of the RUNX3 Promoter as a Potential Prognostic Marker for Bladder Tumor. Journal of Urology, 2008, 180, 1141-1145.	0.4	71
22	Runt-Related Transcription Factor RUNX3 Is a Target of MDM2-Mediated Ubiquitination. Cancer Research, 2009, 69, 8111-8119.	0.9	51
23	Four novel <i>RUNX2</i> mutations including a splice donor site result in the cleidocranial dysplasia phenotype. Journal of Cellular Physiology, 2006, 207, 114-122.	4.1	50
24	Src Kinase Phosphorylates RUNX3 at Tyrosine Residues and Localizes the Protein in the Cytoplasm. Journal of Biological Chemistry, 2010, 285, 10122-10129.	3.4	45
25	RUNX3 regulates cell cycle-dependent chromatin dynamics by functioning as a pioneer factor of the restriction-point. Nature Communications, 2019, 10, 1897.	12.8	42
26	Jab1/CSN5 induces the cytoplasmic localization and degradation of RUNX3. Journal of Cellular Biochemistry, 2009, 107, 557-565.	2.6	39
27	Pimâ€1 kinase phosphorylates and stabilizes RUNX3 and alters its subcellular localization. Journal of Cellular Biochemistry, 2008, 105, 1048-1058.	2.6	38
28	Reciprocal regulation of YAP/TAZ by the Hippo pathway and the Small GTPase pathway. Small GTPases, 2020, 11, 280-288.	1.6	35
29	Nicotinamide Inhibits Growth of Carcinogen Induced Mouse Bladder Tumor and Human Bladder Tumor Xenograft Through Up-Regulation of RUNX3 and p300. Journal of Urology, 2011, 185, 2366-2375.	0.4	32
30	Runx3 is essential for the target-specific axon pathfinding of trkc-expressing dorsal root ganglion neurons. Blood Cells, Molecules, and Diseases, 2003, 30, 157-160.	1.4	28
31	Runx3 is a crucial regulator of alveolar differentiation and lung tumorigenesis in mice. Differentiation, 2011, 81, 261-268.	1.9	25
32	Core Binding Factor β Plays a Critical Role During Chondrocyte Differentiation. Journal of Cellular Physiology, 2016, 231, 162-171.	4.1	25
33	Nigral dopaminergic PAK4 prevents neurodegeneration in rat models of Parkinson's disease. Science Translational Medicine, 2016, 8, 367ra170.	12.4	24
34	Lung Cancer Staging and Associated Genetic and Epigenetic Events. Molecules and Cells, 2020, 43, 1-9.	2.6	23
35	Identification of RUNX3 as a component of the MST/Hpo signaling pathway. Journal of Cellular Physiology, 2012, 227, 839-849.	4.1	20
36	Functional relationship between p53 and RUNX proteins. Journal of Molecular Cell Biology, 2019, 11, 224-230.	3.3	18

SUK-CHUL BAE

#	Article	IF	CITATIONS
37	Expression of SET is modulated as a function of cell proliferation. Journal of Cellular Biochemistry, 1999, 74, 119-126.	2.6	17
38	Nicotinamide inhibits the early stage of carcinogenâ€induced hepatocarcinogenesis in mice and suppresses human hepatocellular carcinoma cell growth. Journal of Cellular Physiology, 2012, 227, 899-908.	4.1	16
39	RUNX3 and p53: How Two Tumor Suppressors Cooperate Against Oncogenic Ras?. Advances in Experimental Medicine and Biology, 2017, 962, 321-332.	1.6	16
40	RUNX3 methylation drives hypoxia-induced cell proliferation and antiapoptosis in early tumorigenesis. Cell Death and Differentiation, 2021, 28, 1251-1269.	11.2	16
41	Phosphorylation of the gastric tumor suppressor RUNX3 following <i>H. pylori</i> infection results in its localization to the cytoplasm. Journal of Cellular Physiology, 2012, 227, 1071-1080.	4.1	10
42	Lung tissue regeneration after induced injury in Runx3 KO mice. Cell and Tissue Research, 2010, 341, 465-470.	2.9	8
43	Involvement of RUNX and BRD Family Members in Restriction Point. Molecules and Cells, 2019, 42, 836-839.	2.6	8
44	A Point Mutation R122C in RUNX3 Promotes the Expansion of Isthmus Stem Cells and Inhibits Their Differentiation in the Stomach. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1317-1345.	4.5	7
45	Runx3 inhibits endothelial progenitor cell differentiation and function via suppression of HIF-1α activity. International Journal of Oncology, 2019, 54, 1327-1336.	3.3	6
46	E1A physically interacts with RUNX3 and inhibits its transactivation activity. Journal of Cellular Biochemistry, 2008, 105, 236-244.	2.6	4
47	Runx3 regulates iron metabolism via modulation of BMP signalling. Cell Proliferation, 2021, 54, e13138.	5.3	3
48	Tour d'Horizon of Recent Advances in RUNX Family Gene Research. Molecules and Cells, 2020, 43, 97-98.	2.6	2
49	Role of RUNX Family Members in G Restriction-Point Regulation. Molecules and Cells, 2020, 43, 182-187.	2.6	2
50	Abstract A43: RUNX3 and pRB form a complex and regulate restriction-point commitment. , 2014, , .		0
51	-Activated Cells Can Develop into Lung Tumors When -Mediated Tumor Suppressor Pathways Are Abrogated, Molecules and Cells, 2020, 43, 889-897.	2.6	0