Chaya Kalcheim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4603976/publications.pdf

Version: 2024-02-01

50 5,266 papers citations

186209 28 h-index 50 g-index

64 all docs 64
docs citations

64 times ranked 4678 citing authors

#	Article	IF	CITATIONS
1	Completion of neural crest cell production and emigration is regulated by retinoic-acid-dependent inhibition of BMP signaling. ELife, 2022, 11 , .	2.8	8
2	Notch signaling is a critical initiator of roof plate formation as revealed by the use of RNA profiling of the dorsal neural tube. BMC Biology, 2021, 19, 84.	1.7	10
3	From Neural Crest to Definitive Roof Plate: The Dynamic Behavior of the Dorsal Neural Tube. International Journal of Molecular Sciences, 2021, 22, 3911.	1.8	12
4	From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Embryonic Development. International Journal of Molecular Sciences, 2021, 22, 9141.	1.8	3
5	Neural tube development depends on notochord-derived Sonic hedgehog released into the sclerotome. Development (Cambridge), 2020, 147, .	1.2	16
6	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	16.1	1,195
7	YAP promotes neural crest emigration through interactions with BMP and Wnt activities. Cell Communication and Signaling, 2019, 17, 69.	2.7	33
8	The Neural Crest: A Remarkable Model System for Studying Development and Disease. Methods in Molecular Biology, 2019, 1976, 1-19.	0.4	4
9	Neural crest emigration: From start to stop. Genesis, 2018, 56, e23090.	0.8	20
10	Cell fate decisions during neural crest ontogeny. International Journal of Developmental Biology, 2017, 61, 195-203.	0.3	23
11	Epithelial–Mesenchymal Transitions during Neural Crest and Somite Development. Journal of Clinical Medicine, 2016, 5, 1.	1.0	62
12	Dynamics of BMP and Hes1/Hairy1 signaling in the dorsal neural tube underlies the transition from neural crest to definitive roof plate. BMC Biology, 2016, 14, 23.	1.7	22
13	Mechanisms of Myogenic Specification and Patterning. Results and Problems in Cell Differentiation, 2015, 56, 77-98.	0.2	8
14	Following the same nerve track toward different cell fates. Science, 2014, 345, 32-33.	6.0	3
15	Segregation of striated and smooth muscle lineages by a Notch-dependent regulatory network. BMC Biology, 2014, 12, 53.	1.7	12
16	Neural-mesodermal progenitor interactions in pattern formation: an introduction to the collection. F1000Research, 2014, 3, 275.	0.8	0
17	Sympathetic neurons and chromaffin cells share a common progenitor in the neural crest in vivo. Neural Development, 2013, 8, 12.	1.1	47
18	Neural crest and somitic mesoderm as paradigms to investigate cell fate decisions during development. Development Growth and Differentiation, 2013, 55, 60-78.	0.6	27

#	Article	IF	Citations
19	A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells. Development (Cambridge), 2013, 140, 2269-2279.	1.2	77
20	The transition from differentiation to growth during dermomyotome-derived myogenesis depends on temporally restricted hedgehog signaling. Development (Cambridge), 2013, 140, 1740-1750.	1.2	29
21	Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12709-12714.	3.3	92
22	Antagonistic activities of Rho and Rac GTPases underlie the transition from neural crest delamination to migration. Developmental Dynamics, 2012, 241, 1155-1168.	0.8	53
23	Regulation of Trunk Myogenesis by the Neural Crest: A New Facet of Neural Crest-Somite Interactions. Developmental Cell, 2011, 21, 187-188.	3.1	14
24	LGN-dependent orientation of cell divisions in the dermomyotome controls lineage segregation into muscle and dermis. Development (Cambridge), 2011, 138, 4155-4166.	1.2	24
25	Sclerotome-derived Slit1 drives directional migration and differentiation of Robo2-expressing pioneer myoblasts. Development (Cambridge), 2011, 138, 2935-2945.	1.2	33
26	The dorsal neural tube: A dynamic setting for cell fate decisions. Developmental Neurobiology, 2010, 70, 796-812.	1.5	69
27	Evidence for a dynamic spatiotemporal fate map and early fate restrictions of premigratory avian neural crest. Development (Cambridge), 2010, 137, 585-595.	1.2	143
28	A negative modulatory role for rho and rho-associated kinase signaling in delamination of neural crest cells. Neural Development, 2008, 3, 27.	1.1	61
29	Notch and bone morphogenetic protein differentially act on dermomyotome cells to generate endothelium, smooth, and striated muscle. Journal of Cell Biology, 2008, 180, 607-618.	2.3	63
30	Medial pioneer fibers pattern the morphogenesis of early myoblasts derived from the lateral somite. Developmental Biology, 2007, 305, 439-450.	0.9	28
31	Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination. Development (Cambridge), 2007, 134, 491-501.	1.2	183
32	Mechanisms of lineage segregation in the avian dermomyotome. Anatomy and Embryology, 2006, 211, 31-36.	1.5	20
33	Differential effects of N-cadherin-mediated adhesion on the development of myotomal waves. Development (Cambridge), 2006, 133, 1101-1112.	1.2	48
34	Expression of neuronal markers suggests heterogeneity of chick sympathoadrenal cells prior to invasion of the adrenal anlagen. Cell and Tissue Research, 2005, 319, 1-13.	1.5	50
35	The Chromaffin Cell and its Development. Neurochemical Research, 2005, 30, 921-925.	1.6	71
36	Early stages of neural crest ontogeny: formation and regulation of cell delamination. International Journal of Developmental Biology, 2005, 49, 105-116.	0.3	51

3

#	Article	IF	CITATIONS
37	Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development (Cambridge), 2005, 132, 689-701.	1.2	159
38	Cell rearrangements during development of the somite and its derivatives. Current Opinion in Genetics and Development, 2005, 15, 371-380.	1.5	77
39	Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition. Development (Cambridge), 2004, 131, 5327-5339.	1.2	167
40	Coherent development of dermomyotome and dermis from the entire mediolateral extent of the dorsal somite. Development (Cambridge), 2003, 130, 4325-4336.	1.2	50
41	Localized BMP4–Noggin Interactions Generate the Dynamic Patterning of Noggin Expression in Somites. Developmental Biology, 2002, 246, 311-328.	0.9	80
42	Association between the Cell Cycle and Neural Crest Delamination through Specific Regulation of G1/S Transition. Developmental Cell, 2002, 3, 383-395.	3.1	137
43	From the Neural Crest to Chromaffin Cells. Annals of the New York Academy of Sciences, 2002, 971, 544-546.	1.8	10
44	The roles of cell migration and myofiber intercalation in patterning formation of the postmitotic myotome. Development (Cambridge), 2002, 129, 2675-2687.	1.2	51
45	The roles of cell migration and myofiber intercalation in patterning formation of the postmitotic myotome. Development (Cambridge), 2002, 129, 2675-87.	1.2	18
46	The third wave of myotome colonization by mitotically competent progenitors: regulating the balance between differentiation and proliferation during muscle development. Development (Cambridge), 2001, 128, 2187-2198.	1.2	75
47	Mechanisms of early neural crest development: From cell specification to migration. International Review of Cytology, 2000, 200, 143-196.	6.2	51
48	F-Spondin, Expressed in Somite Regions Avoided by Neural Crest Cells, Mediates Inhibition of Distinct Somite Domains to Neural Crest Migration. Neuron, 1999, 22, 475-488.	3.8	108
49	The origin and fate of pioneer myotomal cells in the avian embryo. Mechanisms of Development, 1998, 74, 59-73.	1.7	107
50	Formation of the dorsal root ganglia in the avian embryo: Segmental origin and migratory behavior of neural crest progenitor cells. Developmental Biology, 1987, 120, 329-347.	0.9	262