
Teresa A Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4603043/publications.pdf Version: 2024-02-01

TEDESA & DAVIS

#	Article	IF	CITATIONS
1	Regulation of muscle growth in neonates. Current Opinion in Clinical Nutrition and Metabolic Care, 2009, 12, 78-85.	1.3	209
2	Amino Acid Composition of Human Milk Is Not Unique. Journal of Nutrition, 1994, 124, 1126-1132.	1.3	201
3	Stimulation of protein synthesis by both insulin and amino acids is unique to skeletal muscle in neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E880-E890.	1.8	155
4	Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activation. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E914-E921.	1.8	135
5	Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E612-E621.	1.8	133
6	Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E868-E875.	1.8	133
7	Nutrient-Independent and Nutrient-Dependent Factors Stimulate Protein Synthesis in Colostrum-Fed Newborn Pigs. Pediatric Research, 1995, 37, 593-599.	1.1	129
8	Insulin and amino acids independently stimulate skeletal muscle protein synthesis in neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E110-E119.	1.8	121
9	Porcine Colostrum and Milk Stimulate Visceral Organ and Skeletal Muscle Protein Synthesis in Neonatal Piglets. Journal of Nutrition, 1992, 122, 1205-1213.	1.3	114
10	Regulation of translation initiation by insulin and amino acids in skeletal muscle of neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E40-E53.	1.8	108
11	Leucine Supplementation of a Low-Protein Meal Increases Skeletal Muscle and Visceral Tissue Protein Synthesis in Neonatal Pigs by Stimulating mTOR-Dependent Translation Initiation ,. Journal of Nutrition, 2010, 140, 2145-2152.	1.3	103
12	Oral N-Carbamylglutamate Supplementation Increases Protein Synthesis in Skeletal Muscle of Piglets1. Journal of Nutrition, 2007, 137, 315-319.	1.3	102
13	Feeding stimulates protein synthesis in muscle and liver of neonatal pigs through an mTOR-dependent process. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E1080-E1087.	1.8	99
14	Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids, 2009, 37, 97-104.	1.2	88
15	Roles of Insulin and Amino Acids in the Regulation of Protein Synthesis in the Neonate ,. Journal of Nutrition, 1998, 128, 347S-350S.	1.3	87
16	Regulation of protein synthesis by amino acids in muscle of neonates. Frontiers in Bioscience - Landmark, 2011, 16, 1445.	3.0	86
17	Amino Acid Compositions of Body and Milk Protein Change during the Suckling Period in Rats. Journal of Nutrition, 1993, 123, 947-956.	1.3	83
18	Developmental changes in the feeding-induced stimulation of translation initiation in muscle of neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E1226-E1234.	1.8	83

#	Article	IF	CITATIONS
19	Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids, 2015, 47, 259-270.	1.2	83
20	Differential effects of insulin on peripheral and visceral tissue protein synthesis in neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E770-E779.	1.8	73
21	Leucine and α-Ketoisocaproic Acid, but Not Norleucine, Stimulate Skeletal Muscle Protein Synthesis in Neonatal Pigs , ,. Journal of Nutrition, 2010, 140, 1418-1424.	1.3	72
22	Amino acid availability and age affect the leucine stimulation of protein synthesis and eIF4F formation in muscle. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1615-E1621.	1.8	68
23	Stimulation of Muscle Protein Synthesis by Prolonged Parenteral Infusion of Leucine Is Dependent on Amino Acid Availability in Neonatal Pigs. Journal of Nutrition, 2010, 140, 264-270.	1.3	68
24	Chronic Parenteral Nutrition Induces Hepatic Inflammation, Steatosis, and Insulin Resistance in Neonatal Pigs1–3. Journal of Nutrition, 2010, 140, 2193-2200.	1.3	67
25	Aminoacyl-tRNA and tissue free amino acid pools are equilibrated after a flooding dose of phenylalanine. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E103-E109.	1.8	66
26	Amino acid composition of the milk of some mammalian species changes with stage of lactation. British Journal of Nutrition, 1994, 72, 845-853.	1.2	65
27	Response of skeletal muscle protein synthesis to insulin in suckling pigs decreases with development. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E602-E609.	1.8	65
28	Spectrophometric Assay for Measuring Branched-Chain Amino Acid Concentrations: Application for Measuring the Sensitivity of Protein Metabolism to Insulin. Analytical Biochemistry, 1996, 240, 48-53.	1.1	63
29	Activation by insulin and amino acids of signaling components leading to translation initiation in skeletal muscle of neonatal pigs is developmentally regulated. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1597-E1605.	1.8	59
30	Intermittent Bolus Feeding Has a Greater Stimulatory Effect on Protein Synthesis in Skeletal Muscle Than Continuous Feeding in Neonatal Pigs. Journal of Nutrition, 2011, 141, 2152-2158.	1.3	58
31	Developmental changes in the feeding-induced activation of the insulin-signaling pathway in neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E908-E915.	1.8	55
32	Enteral leucine supplementation increases protein synthesis in skeletal and cardiac muscles and visceral tissues of neonatal pigs through mTORC1-dependent pathways. Pediatric Research, 2012, 71, 324-331.	1.1	54
33	Anabolic signaling and protein deposition are enhanced by intermittent compared with continuous feeding in skeletal muscle of neonates. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E674-E686.	1.8	51
34	Importance of Animals in Agricultural Sustainability and Food Security ,. Journal of Nutrition, 2015, 145, 1377-1379.	1.3	50
35	Endotoxin induces differential regulation of mTOR-dependent signaling in skeletal muscle and liver of neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E637-E644.	1.8	49
36	Endotoxemia reduces skeletal muscle protein synthesis in neonates. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E909-E916.	1.8	48

#	Article	IF	CITATIONS
37	Stage of Development and Fasting Affect Protein Synthetic Activity in the Gastrointestinal Tissues of Suckling Rats. Journal of Nutrition, 1991, 121, 1099-1108.	1.3	46
38	Developmental decline in components of signal transduction pathways regulating protein synthesis in pig muscle. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E585-E592.	1.8	46
39	Leucine pulses enhance skeletal muscle protein synthesis during continuous feeding in neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E620-E631.	1.8	46
40	Critical Windows for the Programming Effects of Early-Life Nutrition on Skeletal Muscle Mass. Nestle Nutrition Institute Workshop Series, 2018, 89, 25-35.	1.5	45
41	Protein nutrition of the neonate. Proceedings of the Nutrition Society, 2000, 59, 87-97.	0.4	43
42	Developmental regulation of the activation of signaling components leading to translation initiation in skeletal muscle of neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E849-E859.	1.8	43
43	Feeding Rapidly Stimulates Protein Synthesis in Skeletal Muscle of Neonatal Pigs by Enhancing Translation Initiation , ,. Journal of Nutrition, 2009, 139, 1873-1880.	1.3	42
44	Expression of the TGF-β Family of Ligands Is Developmentally Regulated in Skeletal Muscle of Neonatal Rats. Pediatric Research, 2006, 59, 175-179.	1.1	41
45	Abundance of amino acid transporters involved in mTORC1 activation in skeletal muscle of neonatal pigs is developmentally regulated. Amino Acids, 2013, 45, 523-530.	1.2	40
46	Amino Acids Do Not Alter the Insulin-Induced Activation of the Insulin Signaling Pathway in Neonatal Pigs. Journal of Nutrition, 2004, 134, 24-30.	1.3	39
47	Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration of β-hydroxy-β-methylbutyrate. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E91-E99.	1.8	38
48	Acute IGF-I infusion stimulates protein synthesis in skeletal muscle and other tissues of neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E638-E647.	1.8	37
49	Leucine Oxidation Changes Rapidly after Dietary Protein Intake is Altered in Adult Women but Lysine Flux Is Unchanged As Is Lysine Incorporation into VLDL-Apolipoprotein B-100. Journal of Nutrition, 1994, 124, 41-51.	1.3	36
50	Regulation of neonatal liver protein synthesis by insulin and amino acids in pigs. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E994-E1003.	1.8	34
51	Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs. Journal of Animal Science and Biotechnology, 2014, 5, 8.	2.1	33
52	Regulation of Muscle Growth in Early Postnatal Life in a Swine Model. Annual Review of Animal Biosciences, 2019, 7, 309-335.	3.6	33
53	Nonnutritive Factors in Colostrum Enhance Myofibrillar Protein Synthesis in the Newborn Pig. Pediatric Research, 2000, 48, 511-517.	1.1	32
54	Differential effects of long-term leucine infusion on tissue protein synthesis in neonatal pigs. Amino Acids, 2011, 40, 157-165.	1.2	32

#	Article	IF	CITATIONS
55	Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E601-E610.	1.8	32
56	Regulation of myofibrillar protein turnover during maturation in normal and undernourished rat pups. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R845-R854.	0.9	31
57	Protein Synthesis and Translation Initiation Factor Activation in Neonatal Pigs Fed Increasing Levels of Dietary Protein. Journal of Nutrition, 2005, 135, 1374-1381.	1.3	30
58	Dietary protein and lactose increase translation initiation factor activation and tissue protein synthesis in neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E225-E233.	1.8	30
59	The abundance and activation of mTORC1 regulators in skeletal muscle of neonatal pigs are modulated by insulin, amino acids, and age. Journal of Applied Physiology, 2010, 109, 1448-1454.	1.2	30
60	Development aggravates the severity of skeletal muscle catabolism induced by endotoxemia in neonatal pigs. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R682-R690.	0.9	30
61	Ribosome abundance regulates the recovery of skeletal muscle protein mass upon recuperation from postnatal undernutrition in mice. Journal of Physiology, 2014, 592, 5269-5286.	1.3	30
62	Leucine supplementation stimulates protein synthesis and reduces degradation signal activation in muscle of newborn pigs during acute endotoxemia. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E791-E801.	1.8	30
63	Regulation of Muscle Protein Synthesis in Neonatal Pigs During Prolonged Endotoxemia. Pediatric Research, 2004, 55, 442-449.	1.1	28
64	Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1416-E1425.	1.8	28
65	Differential regulation of protein synthesis in skeletal muscle and liver of neonatal pigs by leucine through an mTORC1-dependent pathway. Journal of Animal Science and Biotechnology, 2012, 3, .	2.1	28
66	Bolus vs. continuous feeding to optimize anabolism in neonates. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18, 102-108.	1.3	28
67	Breastfeeding and risk of overweight in childhood and beyond: a systematic review with emphasis on sibling-pair and intervention studies. American Journal of Clinical Nutrition, 2021, 114, 1774-1790.	2.2	26
68	Dexamethasone inhibits small intestinal growth via increased protein catabolism in neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E269-E277.	1.8	25
69	Modulation of muscle protein synthesis by insulin is maintained during neonatal endotoxemia. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E159-E166.	1.8	24
70	Differential Regulation of Protein Synthesis and mTOR Signaling in Skeletal Muscle and Visceral Tissues of Neonatal Pigs After a Meal. Pediatric Research, 2011, 70, 253-260.	1.1	22
71	Leucine supplementation of a chronically restricted protein and energy diet enhances mTOR pathway activation but not muscle protein synthesis in neonatal pigs. Amino Acids, 2016, 48, 257-267.	1.2	22
72	Intermittent bolus feeding promotes greater lean growth than continuous feeding in a neonatal piglet model. American Journal of Clinical Nutrition, 2018, 108, 830-841.	2.2	22

#	Article	IF	CITATIONS
73	Amino Acid- and Insulin-Induced Activation of mTORC1 in Neonatal Piglet Skeletal Muscle Involves Sestrin2-GATOR2, Rag A/C-mTOR, and RHEB-mTOR Complex Formation. Journal of Nutrition, 2018, 148, 825-833.	1.3	22
74	Insulin stimulates muscle protein synthesis in neonates during endotoxemia despite repression of translation initiation. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E629-E636.	1.8	21
75	Enteral β-hydroxy-β-methylbutyrate supplementation increases protein synthesis in skeletal muscle of neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E1072-E1084.	1.8	21
76	Differential regulation of mTORC1 activation by leucine and β-hydroxy-β-methylbutyrate in skeletal muscle of neonatal pigs. Journal of Applied Physiology, 2020, 128, 286-295.	1.2	17
77	Pulsatile delivery of a leucine supplement during long-term continuous enteral feeding enhances lean growth in term neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E699-E713.	1.8	16
78	A Proposed Framework for Identifying Nutrients and Food Components of Public Health Relevance in the Dietary Guidelines for Americans. Journal of Nutrition, 2021, 151, 1197-1204.	1.3	16
79	Both Maternal Over―and Undernutrition During Gestation Increase the Adiposity of Young Adult Progeny in Rats. Obesity, 1995, 3, 131-141.	4.0	15
80	Insulin Signaling in Skeletal Muscle and Liver of Neonatal Pigs During Endotoxemia. Pediatric Research, 2008, 64, 505-510.	1.1	15
81	Viscera and muscle protein synthesis in neonatal pigs is increased more by intermittent bolus than by continuous feeding. Pediatric Research, 2013, 74, 154-162.	1.1	15
82	Prematurity blunts the feeding-induced stimulation of translation initiation signaling and protein synthesis in muscle of neonatal piglets. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E839-E851.	1.8	15
83	Development of Food Pattern Recommendations for Infants and Toddlers 6–24 Months of Age to Support the Dietary Guidelines for Americans, 2020–2025. Journal of Nutrition, 2021, 151, 3113-3124.	1.3	15
84	Sepsis and Development Impede Muscle Protein Synthesis in Neonatal Pigs by Different Ribosomal Mechanisms. Pediatric Research, 2011, 69, 473-478.	1.1	14
85	Whole-Body and Hindlimb Protein Breakdown Are Differentially Altered by Feeding in Neonatal Piglets. Journal of Nutrition, 2005, 135, 1430-1437.	1.3	13
86	Short- and long-term effects of leucine and branched-chain amino acid supplementation of a protein- and energy-reduced diet on muscle protein metabolism in neonatal pigs. Amino Acids, 2018, 50, 943-959.	1.2	13
87	A guide for authors and readers of the American Society for Nutrition Journals on the proper use of P values and strategies that promote transparency and improve research reproducibility. American Journal of Clinical Nutrition, 2021, 114, 1280-1285.	2.2	13
88	Prematurity blunts the insulin- and amino acid-induced stimulation of translation initiation and protein synthesis in skeletal muscle of neonatal pigs. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E551-E565.	1.8	12
89	Intermittent leucine pulses during continuous feeding alters novel components involved in skeletal muscle growth of neonatal pigs. Amino Acids, 2020, 52, 1319-1335.	1.2	11
90	The Roles of Nutrition, Development and Hormone Sensitivity in the Regulation of Protein Metabolism: An Overview , ,. Journal of Nutrition, 1998, 128, 340S-341S.	1.3	10

#	Article	IF	CITATIONS
91	Amino acids, independent of insulin, attenuate skeletal muscle autophagy in neonatal pigs during endotoxemia. Pediatric Research, 2016, 80, 448-451.	1.1	10
92	Peter J. Reeds (February 22, 1945–August 13, 2002). Journal of Nutrition, 2003, 133, 5-8.	1.3	9
93	Dietary and Complementary Feeding Practices of US Infants, 6 to 12 Months: A Narrative Review of the Federal Nutrition Monitoring Data. Journal of the Academy of Nutrition and Dietetics, 2022, 122, 2337-2345.e1.	0.4	8
94	Intermittent bolus feeding does not enhance protein synthesis, myonuclear accretion, or lean growth more than continuous feeding in a premature piglet model. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E737-E752.	1.8	8
95	Insulin and Amino Acids are Critical Regulators of Neonatal Muscle Growth. Nutrition Today, 2008, 43, 143-149.	0.6	5
96	Insulin modulates energy and substrate sensing and protein catabolism induced by chronic peritonitis in skeletal muscle of neonatal pigs. Pediatric Research, 2016, 80, 744-752.	1.1	5
97	Intermittent Bolus Feeding Enhances Organ Growth More Than Continuous Feeding in a Neonatal Piglet Model. Current Developments in Nutrition, 2020, 4, nzaa170.	0.1	4
98	Postnatal Muscle Growth Is Dependent on Satellite Cell Proliferation Which Demonstrates A Specific Requirement for Dietary Protein. FASEB Journal, 2016, 30, 1244.1.	0.2	4
99	Leucine Supplementation Does Not Restore Diminished Skeletal Muscle Satellite Cell Abundance and Myonuclear Accretion When Protein Intake Is Limiting in Neonatal Pigs. Journal of Nutrition, 2020, 150, 22-30.	1.3	2
100	Intermittent Bolus Compared With Continuous Feeding Enhances Insulin and Amino Acid Signaling to Translation Initiation in Skeletal Muscle of Neonatal Pigs. Journal of Nutrition, 2021, 151, 2636-2645.	1.3	2
101	Oral Nâ€carbamylglutamate (NCC) supplementation increases growth rate in sowâ€reared pigets. FASEB Journal, 2006, 20, A425.	0.2	2
102	Longâ€chain nâ€3 fatty acids – New anabolic compounds improving protein metabolism. FASEB Journal, 2009, 23, LB107.	0.2	2
103	Future of biomedical, agricultural, and biological systems research using domesticated animals. Biology of Reproduction, 2022, 106, 629-638.	1.2	2
104	Intermittent Leucine Pulses Enhance Skeletal Muscle mTOR Signaling and Protein Synthesis in Continuously Fed Preterm Pigs. Current Developments in Nutrition, 2021, 5, 543.	0.1	1
105	Effect of the leucine analogs, αâ€ketoisocaproic acid (KIC) and norleucine, on muscle protein synthesis and translation initiation factor activation in neonatal pigs. FASEB Journal, 2006, 20, A162.	0.2	1
106	Insulin accelerates global and mitochondrial protein synthesis rates in neonatal muscle during sepsis. FASEB Journal, 2009, 23, 33.2.	0.2	1
107	SNAT2 and LAT1 transporter abundance is developmentally regulated in skeletal muscle of neonatal pigs. FASEB Journal, 2010, 24, 331.4.	0.2	1
108	Lean Growth Is Enhanced by Intermittent Bolus Compared with Continuous Feeding in Neonates. FASEB Journal, 2012, 26, 42.3.	0.2	1

#	Article	IF	CITATIONS
109	Distinct Role of Rheb and Grb10 in the Regulation of mTORC1 Signaling in Skeletal Muscle of Neonatal Pigs. FASEB Journal, 2013, 27, 1084.4.	0.2	1
110	Leucine ameliorates endotoxinâ€induced alterations in proteinâ€protein interactions within mTORC1 complex in neonatal piglets. FASEB Journal, 2016, 30, 915.20.	0.2	1
111	Continuous Feeding Does Not Blunt Skeletal Muscle Protein Synthesis and Lean Growth Compared to Intermittent Bolus Feeding in the Preterm Piglet (OR26-06-19). Current Developments in Nutrition, 2019, 3, nzz033.OR26-06-19.	0.1	0
112	356 Meal feeding compared with continuous feeding enhances insulin and amino acid signaling to translation initiation in skeletal muscle of pigs. Journal of Animal Science, 2019, 97, 127-128.	0.2	0
113	Intermittent Bolus Compared with Continuous Feeding Enhances Insulin and Amino Acid Signaling to Translation Initiation in Skeletal Muscle of Pigs Born at Term (P08-071-19). Current Developments in Nutrition, 2019, 3, nzz044.P08-071-19.	0.1	0
114	26 Do we need a Plan B for Plan S?. Journal of Animal Science, 2019, 97, 23-24.	0.2	0
115	Continuous Feeding Does Not Blunt Satellite Cell Abundance, Myonuclear Accretion, or Lean Growth in a Neonatal Piglet Model of Prematurity. Current Developments in Nutrition, 2020, 4, nzaa050_019.	0.1	0
116	Prematurity Alters the Feeding-Induced Activation of Signaling Components Towards AKT in Skeletal Muscle of Neonatal Piglets. Current Developments in Nutrition, 2020, 4, nzaa050_024.	0.1	0
117	The 2020 FASEB Virtual Science Research Conference on Nutrient Sensing and Metabolic Signaling, August 10â€11, 2020. FASEB Journal, 2020, 34, 15627-15629.	0.2	0
118	Regulation of Akt Signaling in Skeletal Muscle Is Altered by Prematurity in a Neonatal Piglet Model. Current Developments in Nutrition, 2021, 5, 544.	0.1	0
119	Amino Acids Augment Muscle Protein Synthesis in Neonatal Pigs During Endotoxemia by Modulating Translation Initiation. FASEB Journal, 2006, 20, A9.	0.2	0
120	Developmental regulation of the activation of signaling components leading to translation initiation in skeletal muscle of neonatal pigs. FASEB Journal, 2006, 20, A425.	0.2	0
121	Leucine stimulation of skeletal muscle protein synthesis during prolonged leucine infusion is dependent on amino acid availability. FASEB Journal, 2006, 20, A162.	0.2	Ο
122	Stimulation of Muscle Protein Synthesis by Glucose in Neonates Is AMP Kinase Independent. FASEB Journal, 2006, 20, A1046.	0.2	0
123	Acute IGFâ€i infusion stimulates whole body protein synthesis but does not reduce proteolysis in neonates. FASEB Journal, 2007, 21, A1119.	0.2	Ο
124	The activation of insulin signaling components leading to mRNA translation in skeletal muscle of neonatal pigs is developmentally regulated. FASEB Journal, 2007, 21, A1119.	0.2	0
125	The activation of nutrient signaling components leading to mRNA translation in skeletal muscle of neonatal pigs is developmentally regulated. FASEB Journal, 2007, 21, A714.	0.2	0
126	Insulin and amino acids stimulate whole body protein synthesis in neonates. FASEB Journal, 2007, 21, A334.	0.2	0

#	Article	IF	CITATIONS
127	Stimulation of whole body protein synthesis by insulin in neonates is dependent on the pattern of amino acids available. FASEB Journal, 2007, 21, A162.	0.2	0
128	Endotoxin Reduces Muscle Protein Synthesis and Restrains Translation Initiation by Decreasing eIF4G Phosphorylation in Neonatal and Young Pigs. FASEB Journal, 2008, 22, 869.13.	0.2	0
129	Somatotropin Enhanced Muscle Protein Synthesis in Growing Pigs Is Not Modulated by Insulin. FASEB Journal, 2008, 22, 1114.2.	0.2	0
130	Rapamycin blocks leucineâ€induced protein synthesis by suppressing mTORC1 activation in skeletal muscle of neonatal pigs. FASEB Journal, 2008, 22, 306.5.	0.2	0
131	Feedingâ€induced time course of changes in protein synthesis in neonatal pig skeletal muscle. FASEB Journal, 2009, 23, 738.2.	0.2	Ο
132	Longâ€ŧerm leucine induced stimulation of muscle protein synthesis is amino acid dependent. FASEB Journal, 2009, 23, 228.7.	0.2	0
133	Acute Effects of Enteral Leucine Supplementation of a Low Protein Diet on Muscle Protein Synthesis in Neonatal Pigs. FASEB Journal, 2009, 23, 33.1.	0.2	Ο
134	Mechanical ventilation and sepsis induce skeletal muscle catabolism in neonatal pigs. FASEB Journal, 2010, 24, 740.34.	0.2	0
135	Differential Regulation of Protein Synthesis and mTOR Signaling in Skeletal Muscle and Visceral Tissues of Neonatal Pigs after a Meal. FASEB Journal, 2010, 24, 220.5.	0.2	Ο
136	Ageâ€dependent capacity to accelerate protein synthesis dictates the extent of compensatory growth in skeletal muscle following undernutrition. FASEB Journal, 2010, 24, 97.8.	0.2	0
137	Prolonged leucine infusion differentially affects tissue protein synthesis in neonatal pigs. FASEB Journal, 2010, 24, .	0.2	Ο
138	Maturity aggravates sepsisâ€associated skeletal muscle catabolism in growing pigs FASEB Journal, 2010, 24, 327.2.	0.2	0
139	Intermittent Bolus Feeding Has a Greater Stimulatory Effect on Protein Synthesis in Skeletal Muscle than Continuous Feeding in Neonatal Pigs. FASEB Journal, 2010, 24, 327.3.	0.2	0
140	Chronic Enteral Leucine Supplementation of a Low Protein Diet Increases Skeletal Muscle Protein Synthesis in Neonatal Pigs by Stimulating mTORâ€Dependent Translation Initiation. FASEB Journal, 2010, 24, 327.4.	0.2	0
141	Leucine Supplementation of a Low Protein Meal Increases Skeletal Muscle and Visceral Tissue Protein Synthesis in Neonatal Pigs by Stimulating mTORâ€Đependent Translation Initiation. FASEB Journal, 2010, 24, 97.4.	0.2	0
142	Differential expression of protonâ€assisted amino acid transporters (PAT1 and PAT2) in tissues of neonatal pigs. FASEB Journal, 2011, 25, 782.10.	0.2	0
143	Protein Deposition in the Hindquarters of Neonatal Pigs Is Enhanced by Intermittent Bolus Compared to Continuous Feeding. FASEB Journal, 2011, 25, 109.4.	0.2	0
144	Chronic leucine supplementation of a low protein diet increases protein synthesis in skeletal muscle and visceral tissues of neonatal pigs through mTOR signaling. FASEB Journal, 2011, 25, 109.5.	0.2	0

#	Article	IF	CITATIONS
145	Sepsis and Mechanical Ventilation Restrain Translation Initiation in Skeletal Muscle by Inducing AMPKâ€associated TSC2 Restriction of mTOR Signaling in Pigs. FASEB Journal, 2011, 25, 983.11.	0.2	0
146	Amino acids suppress the autophagic degradation pathway in skeletal muscle of septic neonatal pigs. FASEB Journal, 2012, 26, 649.6.	0.2	0
147	Nutritionallyâ€induced neonatal muscle growth retardation can be rescued by sustained muscle IGFâ€i expression. FASEB Journal, 2012, 26, 265.6.	0.2	0
148	Persistence of an Adverse Metabolic Phenotype in Parenterally Fed Neonatal Pigs. FASEB Journal, 2012, 26, 34.4.	0.2	0
149	Leucine Pulse Increases Skeletal Muscle Protein Synthesis during Continuous Feeding in Neonatal Pigs. FASEB Journal, 2012, 26, 265.5.	0.2	0
150	Lean Gain Is Enhanced by a Leucine Pulse during Longâ€Term Continuous Feeding in Neonatal Pigs. FASEB Journal, 2013, 27, 350.6.	0.2	0
151	Voluntary activity is blunted following undernutrition in early life. FASEB Journal, 2013, 27, 111.1.	0.2	0
152	Supplementation with a Leucine Pulse during Continuous Feeding Stimulates Translation Initiation and Suppresses Protein Degradation Pathways in Muscle of Neonatal Pigs. FASEB Journal, 2013, 27, .	0.2	0
153	Cholanemia induces skeletal muscle wasting despite stimulation of translation initiation, decreased autophagy, activation of Yes Associated Protein (YAP) and proteosomal signal activation in mice. FASEB Journal, 2013, 27, 631.7.	0.2	0
154	Regulation of the protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs (137.1). FASEB Journal, 2014, 28, 137.1.	0.2	0
155	Leucine Antagonizes Protein Degradation Induced by Endotoxin in Skeletal Muscle of Neonatal Pigs. FASEB Journal, 2015, 29, 755.3.	0.2	0
156	Leucine Attenuates the Endotoxinâ€induced Reduction in Skeletal Muscle Protein Synthesis in Neonatal Pigs. FASEB Journal, 2015, 29, 742.1.	0.2	0
157	Longâ€ŧerm Intermittent Leucine Pulses during Continuous Feeding Impact the Plasma Metabolome of Neonatal Pigs. FASEB Journal, 2016, 30, 908.5.	0.2	0
158	Longâ€ŧerm Leucine and BCAA Inclusion in a 30% Protein and Energy Restricted Diet Increases mTORC1 Signaling in Skeletal Muscle of Neonatal Pigs. FASEB Journal, 2016, 30, 124.3.	0.2	0
159	Intermittent Leucine Pulses during Continuous Feeding Alters Novel Components Involved in Skeletal Muscle Growth of Neonatal Pigs. FASEB Journal, 2016, 30, 430.2.	0.2	0
160	OUP accepted manuscript. American Journal of Clinical Nutrition, 2022, 115, 598-600.	2.2	0
161	Use of Nuclear Techniques in Human Nutrition Research: A Call for Papers. Journal of Nutrition, 2022, 152, 371-372.	1.3	0
162	Leucine Administration in Conjunction With Continuous Feeding Improves Lean Growth in a Preterm Piglet Model. Current Developments in Nutrition, 2022, 6, 700.	0.1	0

#	Article	IF	CITATIONS
163	Prematurity Negatively Alters Activation of the Amino Acid Signaling Pathway That Regulates Protein Synthesis in Muscle of a Preterm Piglet Model. Current Developments in Nutrition, 2022, 6, 472.	0.1	0
164	Prematurity Attenuates Skeletal Muscle Anabolism of Neonatal Pigs Independently of Birth Weight. Current Developments in Nutrition, 2022, 6, 471.	0.1	0