List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4602084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rhamnolipids: diversity of structures, microbial origins and roles. Applied Microbiology and Biotechnology, 2010, 86, 1323-1336.	3.6	731
2	Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1339-1344.	7.1	561
3	Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biology, 2006, 7, R90.	9.6	479
4	rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology (United Kingdom), 2003, 149, 2005-2013.	1.8	421
5	Initiation of Biofilm Formation by <i>Pseudomonas aeruginosa</i> 57RP Correlates with Emergence of Hyperpiliated and Highly Adherent Phenotypic Variants Deficient in Swimming, Swarming, and Twitching Motilities. Journal of Bacteriology, 2001, 183, 1195-1204.	2.2	415
6	The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl- l-homoserine lactones. Molecular Microbiology, 2004, 55, 998-1014.	2.5	396
7	Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19890-19895.	7.1	385
8	Production of rhamnolipids by Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2005, 68, 718-725.	3.6	380
9	The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2530-2535.	7.1	364
10	Pseudomonas aeruginosa-Plant Root Interactions. Pathogenicity, Biofilm Formation, and Root Exudation. Plant Physiology, 2004, 134, 320-331.	4.8	327
11	Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Molecular Microbiology, 2007, 64, 512-533.	2.5	325
12	MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Molecular Microbiology, 2006, 62, 1689-1699.	2.5	273
13	Biosurfactant production by a soil pseudomonas strain growing on polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 1996, 62, 1908-1912.	3.1	269
14	Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhIR regulates LasR-specific factors. Microbiology (United Kingdom), 2009, 155, 712-723.	1.8	252
15	Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1440, 244-252.	2.4	236
16	Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. Journal of the American Society for Mass Spectrometry, 2004, 15, 862-869.	2.8	232
17	LasR Variant Cystic Fibrosis Isolates Reveal an Adaptable Quorum-Sensing Hierarchy in Pseudomonas aeruginosa. MBio, 2016, 7, .	4.1	219
18	Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environmental Microbiology, 2009, 11, 126-136.	3.8	186

#	Article	IF	CITATIONS
19	Inhibitors of Pathogen Intercellular Signals as Selective Anti-Infective Compounds. PLoS Pathogens, 2007, 3, e126.	4.7	184
20	Selfâ€produced extracellular stimuli modulate the <i>Pseudomonas aeruginosa</i> swarming motility behaviour. Environmental Microbiology, 2007, 9, 2622-2630.	3.8	170
21	Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiology, 2009, 9, 263.	3.3	166
22	Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1485, 145-152.	2.4	164
23	Full Virulence of <i>Pseudomonas aeruginosa</i> Requires OprF. Infection and Immunity, 2011, 79, 1176-1186.	2.2	162
24	Staphylococcus aureus Small-Colony Variants Are Independently Associated With Worse Lung Disease in Children With Cystic Fibrosis. Clinical Infectious Diseases, 2013, 57, 384-391.	5.8	153
25	The various lifestyles of the <i>Burkholderia cepacia</i> complex species: a tribute to adaptation. Environmental Microbiology, 2011, 13, 1-12.	3.8	151
26	Two-liquid-phase bioreactors for enhanced degradation of hydrophobic/toxic compounds. Biodegradation, 1999, 10, 219-233.	3.0	148
27	Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Frontiers in Microbiology, 2015, 6, 1036.	3.5	144
28	Increase in Rhamnolipid Synthesis under Iron-Limiting Conditions Influences Surface Motility and Biofilm Formation in <i>Pseudomonas aeruginosa</i> . Journal of Bacteriology, 2010, 192, 2973-2980.	2.2	140
29	Convergent Evolution of Hyperswarming Leads to Impaired Biofilm Formation in Pathogenic Bacteria. Cell Reports, 2013, 4, 697-708.	6.4	134
30	A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochimica Et Biophysica Acta - General Subjects, 2003, 1622, 36-41.	2.4	129
31	Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2-1 from cassava wastewater. Process Biochemistry, 2010, 45, 1511-1516.	3.7	129
32	<i>Burkholderia pseudomallei</i> , <i>B. thailandensis</i> , and <i>B. ambifaria</i> Produce 4-Hydroxy-2-Alkylquinoline Analogues with a Methyl Group at the 3 Position That Is Required for Quorum-Sensing Regulation. Journal of Bacteriology, 2008, 190, 5339-5352.	2.2	128
33	Staphylococcus aureus sigma B-dependent emergence of small-colony variants and biofilm production following exposure to Pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N- oxide. BMC Microbiology, 2010, 10, 33.	3.3	128
34	The End of an Old Hypothesis: The Pseudomonas Signaling Molecules 4-Hydroxy-2-Alkylquinolines Derive from Fatty Acids, Not 3-Ketofatty Acids. Chemistry and Biology, 2013, 20, 1481-1491.	6.0	122
35	<i>Pseudomonas aeruginosa</i> in premise plumbing of large buildings. MicrobiologyOpen, 2016, 5, 937-956.	3.0	120
36	MexEF-OprN Efflux Pump Exports the Pseudomonas Quinolone Signal (PQS) Precursor HHQ (4-hydroxy-2-heptylquinoline). PLoS ONE, 2011, 6, e24310.	2.5	118

#	Article	IF	CITATIONS
37	Social cheating in a <i>Pseudomonas aeruginosa</i> quorum-sensing variant. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7021-7026.	7.1	104
38	Improving the reproducibility of <i>Pseudomonas aeruginosa</i> swarming motility assays. Journal of Basic Microbiology, 2008, 48, 509-515.	3.3	103
39	Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics, 2010, 11, 587.	2.8	102
40	The involvement of rhamnolipids in microbial cell adhesion and biofilm development - an approach for control?. Letters in Applied Microbiology, 2014, 58, 447-453.	2.2	101
41	Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Applied Microbiology and Biotechnology, 2006, 73, 187-194.	3.6	100
42	A Quorum Sensing Regulated Small Volatile Molecule Reduces Acute Virulence and Promotes Chronic Infection Phenotypes. PLoS Pathogens, 2011, 7, e1002192.	4.7	100
43	Optimization of high-molecular-weight polycyclic aromatic hydrocarbons' degradation in a two-liquid-phase bioreactor. Journal of Applied Microbiology, 2000, 88, 655-662.	3.1	99
44	Studies of Pseudomonas aeruginosa Mutants Indicate Pyoverdine as the Central Factor in Inhibition of Aspergillus fumigatus Biofilm. Journal of Bacteriology, 2018, 200, .	2.2	99
45	Vfm a new quorum sensing system controls the virulence of <i><scp>D</scp>ickeya dadantii</i> . Environmental Microbiology, 2013, 15, 865-880.	3.8	95
46	Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Scientific Reports, 2016, 6, 30169.	3.3	89
47	A Stereospecific Pathway Diverts β-Oxidation Intermediates to the Biosynthesis of Rhamnolipid Biosurfactants. Chemistry and Biology, 2014, 21, 156-164.	6.0	87
48	Characterization of rhamnolipid production by Burkholderia glumae. Letters in Applied Microbiology, 2011, 53, 620-627.	2.2	82
49	Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Applied Microbiology and Biotechnology, 2019, 103, 1189-1215.	3.6	80
50	Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils. Canadian Journal of Microbiology, 1997, 43, 368-377.	1.7	79
51	Temperature diagnostic to identify high risk areas and optimize Legionella pneumophila surveillance in hot water distribution systems. Water Research, 2015, 71, 244-256.	11.3	77
52	Homeostatic Interplay between Bacterial Cell-Cell Signaling and Iron in Virulence. PLoS Pathogens, 2010, 6, e1000810.	4.7	76
53	Interspecific Small Molecule Interactions between Clinical Isolates of Pseudomonas aeruginosa and Staphylococcus aureus from Adult Cystic Fibrosis Patients. PLoS ONE, 2014, 9, e86705.	2.5	76
54	Burkholderia diversity and versatility: an inventory of the extracellular products. Journal of Microbiology and Biotechnology, 2007, 17, 1407-29.	2.1	75

#	Article	IF	CITATIONS
55	Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1063-1072.	3.0	72
56	Rhamnolipids: Detection, Analysis, Biosynthesis, Genetic Regulation, and Bioengineering of Production. Microbiology Monographs, 2011, , 13-55.	0.6	72
57	Bacterial Diversity of a Consortium Degrading High-Molecular-Weight Polycyclic Aromatic Hydrocarbons in a Two-Liquid Phase Biosystem. Microbial Ecology, 2009, 57, 455-468.	2.8	71
58	The complex symbiotic relationships of bark beetles with microorganisms: a potential practical approach for biological control in forestry. Pest Management Science, 2012, 68, 963-975.	3.4	70
59	Two-Liquid-Phase Slurry Bioreactors To Enhance the Degradation of High-Molecular-Weight Polycyclic Aromatic Hydrocarbons in Soil. Biotechnology Progress, 2000, 16, 966-972.	2.6	62
60	Extracellular DNA release, quorum sensing, and PrrF1/F2 small RNAs are key players in Pseudomonas aeruginosa tobramycin-enhanced biofilm formation. Npj Biofilms and Microbiomes, 2019, 5, 15.	6.4	61
61	Microbial biosurfactant research: time to improve the rigour in the reporting of synthesis, functional characterization and process development. Microbial Biotechnology, 2021, 14, 147-170.	4.2	61
62	The Extra-Cytoplasmic Function Sigma Factor SigX Modulates Biofilm and Virulence-Related Properties in Pseudomonas aeruginosa. PLoS ONE, 2013, 8, e80407.	2.5	60
63	Initial characterization of new bacteria degrading high-molecular weight polycyclic aromatic hydrocarbons isolated from a 2-year enrichment in a two-liquid-phase culture system. Journal of Applied Microbiology, 2003, 94, 301-311.	3.1	59
64	Quorum Sensing Controls Swarming Motility of Burkholderia glumae through Regulation of Rhamnolipids. PLoS ONE, 2015, 10, e0128509.	2.5	59
65	Impact of stagnation and sampling volume on water microbial quality monitoring in large buildings. PLoS ONE, 2018, 13, e0199429.	2.5	55
66	Intermicrobial interaction: Aspergillus fumigatus siderophores protect against competition by Pseudomonas aeruginosa. PLoS ONE, 2019, 14, e0216085.	2.5	53
67	Surveying the endomicrobiome and ectomicrobiome of bark beetles: The case of Dendroctonus simplex. Scientific Reports, 2015, 5, 17190.	3.3	51
68	Identification and Characterization of a Novel CprA Reductive Dehalogenase Specific to Highly Chlorinated Phenols from <i>Desulfitobacterium hafniense</i> Strain PCP-1. Applied and Environmental Microbiology, 2010, 76, 7536-7540.	3.1	45
69	Recovery ofPseudomonas aeruginosaculturability following copper- and chlorine-induced stress. FEMS Microbiology Letters, 2014, 356, 226-234.	1.8	45
70	Hospital Drains as Reservoirs of Pseudomonas aeruginosa: Multiple-Locus Variable-Number of Tandem Repeats Analysis Genotypes Recovered from Faucets, Sink Surfaces and Patients. Pathogens, 2017, 6, 36.	2.8	45
71	Proanthocyanidin Interferes with Intrinsic Antibiotic Resistance Mechanisms of Gramâ€Negative Bacteria. Advanced Science, 2019, 6, 1802333.	11.2	45
72	Preparation, Imaging, and Quantification of Bacterial Surface Motility Assays. Journal of Visualized Experiments, 2015, , .	0.3	44

#	Article	IF	CITATIONS
73	Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy) alkanoic acid precursors of rhamnolipids inPseudomonas aeruginosacultures. Journal of Mass Spectrometry, 2002, 37, 41-46.	1.6	43
74	ldentification of quorum sensing ontrolled genes in <i><scp>B</scp>urkholderia ambifaria</i> . MicrobiologyOpen, 2013, 2, 226-242.	3.0	39
75	Post-Outbreak Investigation of <i>Pseudomonas aeruginosa</i> Faucet Contamination by Quantitative Polymerase Chain Reaction and Environmental Factors Affecting Positivity. Infection Control and Hospital Epidemiology, 2015, 36, 1337-1343.	1.8	36
76	Polypharmacology Approaches against the <i>Pseudomonas aeruginosa</i> MvfR Regulon and Their Application in Blocking Virulence and Antibiotic Tolerance. ACS Chemical Biology, 2017, 12, 1435-1443.	3.4	36
77	Phase variation has a role in <i>Burkholderia ambifaria</i> niche adaptation. ISME Journal, 2010, 4, 49-60.	9.8	35
78	<i>Aspergillus-Pseudomonas</i> interaction, relevant to competition in airways. Medical Mycology, 2019, 57, S228-S232.	0.7	35
79	PqsE Is Essential for RhlR-Dependent Quorum Sensing Regulation in Pseudomonas aeruginosa. MSystems, 2020, 5, .	3.8	35
80	An Organ System-Based Synopsis of <i>Pseudomonas aeruginosa</i> Virulence. Virulence, 2021, 12, 1469-1507.	4.4	35
81	Novel intermicrobial molecular interaction: Pseudomonas aeruginosa Quinolone Signal (PQS) modulates Aspergillus fumigatus response to iron. Microbiology (United Kingdom), 2020, 166, 44-55.	1.8	33
82	Drosophila melanogaster as a Model Host for the Burkholderia cepacia Complex. PLoS ONE, 2010, 5, e11467.	2.5	32
83	PqsA is required for the biosynthesis of 2,4-dihydroxyquinoline (DHQ), a newly identified metabolite produced by <i>Pseudomonas aeruginosa</i> and <i>Burkholderia thailandensis</i> . Biological Chemistry, 2007, 388, 839-845.	2.5	29
84	Biodegradation of Endocrine Disruptors in Solid-Liquid Two-Phase Partitioning Systems by Enrichment Cultures. Applied and Environmental Microbiology, 2013, 79, 4701-4711.	3.1	29
85	Conserved virulence factors of Pseudomonas aeruginosa are required for killing Bacillus subtilis. Journal of Microbiology, 2005, 43, 443-50.	2.8	29
86	Comparative Analysis of Rhamnolipids from Novel Environmental Isolates of <i>Pseudomonas aeruginosa</i> . Journal of Surfactants and Detergents, 2013, 16, 673-682.	2.1	25
87	Bacterial rhamnolipids and their 3-hydroxyalkanoate precursors activate <i>Arabidopsis</i> innate immunity through two independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
88	Interplay between 4-Hydroxy-3-Methyl-2-Alkylquinoline and N-Acyl-Homoserine Lactone Signaling in a Burkholderia cepacia Complex Clinical Strain. Frontiers in Microbiology, 2017, 8, 1021.	3.5	24
89	The absence of SigX results in impaired carbon metabolism and membrane fluidity in Pseudomonas aeruginosa. Scientific Reports, 2018, 8, 17212.	3.3	24
90	<scp><i>Pseudomonas aeruginosa</i></scp> isolates defective in function of the <scp>LasR</scp> quorum sensing regulator are frequent in diverse environmental niches. Environmental Microbiology, 2022, 24, 1062-1075.	3.8	24

#	Article	IF	CITATIONS
91	Peptide modification results in the formation of a dimer with a 60-fold enhanced antimicrobial activity. PLoS ONE, 2017, 12, e0173783.	2.5	23
92	Potential of the Burkholderia cepacia Complex to Produce 4-Hydroxy-3-Methyl-2-Alkyquinolines. Frontiers in Cellular and Infection Microbiology, 2019, 9, 33.	3.9	23
93	Development of a novel biological control agent targeting the phytopathogen Erwinia amylovora. Heliyon, 2020, 6, e05222.	3.2	23
94	Development of four-stage moving bed biofilm reactor train with a pre-denitrification configuration for the removal of thiocyanate and cyanate. Bioresource Technology, 2015, 181, 254-262.	9.6	22
95	Bactericidal Effect of Tomatidine-Tobramycin Combination against Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa Is Enhanced by Interspecific Small-Molecule Interactions. Antimicrobial Agents and Chemotherapy, 2015, 59, 7458-7464.	3.2	22
96	<scp>C</scp> yclicâ€diâ€ <scp>GMP</scp> levels affect <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> fitness in the presence of imipenem. Environmental Microbiology, 2014, 16, 1321-1333.	3.8	21
97	A Novel Glycolipid Biosurfactant Confers Grazing Resistance upon Pantoea ananatis BRT175 against the Social Amoeba Dictyostelium discoideum. MSphere, 2016, 1, .	2.9	21
98	The Complex Quorum Sensing Circuitry of <i>Burkholderia thailandensis</i> Is Both Hierarchically and Homeostatically Organized. MBio, 2017, 8, .	4.1	21
99	Genomic characterization of environmental Pseudomonas aeruginosa isolated from dental unit waterlines revealed the insertion sequence ISPa11 as a chaotropic element. FEMS Microbiology Ecology, 2017, 93, .	2.7	21
100	Broth versus Surface-Grown Cells: Differential Regulation of RsmY/Z Small RNAs in Pseudomonas aeruginosa by the Gac/HptB System. Frontiers in Microbiology, 2016, 7, 2168.	3.5	21
101	A chiral high-performance liquid chromatography–tandem mass spectrometry method for the stereospecific analysis of enoyl-coenzyme A hydratases/isomerases. Journal of Chromatography A, 2013, 1306, 37-43.	3.7	20
102	Liquid Chromatography/Mass Spectrometry (LC/MS) for the Detection and Quantification of N-Acyl-L-Homoserine Lactones (AHLs) and 4-Hydroxy-2-Alkylquinolines (HAQs). Methods in Molecular Biology, 2018, 1673, 49-59.	0.9	20
103	Adaptive Significance of Quorum Sensing-Dependent Regulation of Rhamnolipids by Integration of Growth Rate in Burkholderia glumae: A Trade-Off between Survival and Efficiency. Frontiers in Microbiology, 2016, 7, 1215.	3.5	19
104	Secondary metabolites from the <i>Burkholderia pseudomallei</i> complex: structure, ecology, and evolution. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 877-887.	3.0	18
105	ScmR, a Global Regulator of Gene Expression, Quorum Sensing, pH Homeostasis, and Virulence in <i>Burkholderia thailandensis</i> . Journal of Bacteriology, 2020, 202, .	2.2	18
106	Liquid Chromatography/Mass Spectrometry for the Identification and Quantification of Rhamnolipids. Methods in Molecular Biology, 2014, 1149, 359-373.	0.9	16
107	Quorum Sensing Controls Both Rhamnolipid and Polyhydroxyalkanoate Production in Burkholderia thailandensis Through ScmR Regulation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1033.	4.1	16
108	Liquid Chromatography/Mass Spectrometry for the Detection and Quantification of N-Acyl-l-Homoserine Lactones and 4-Hydroxy-2-Alkylquinolines. Methods in Molecular Biology, 2011, 692, 61-69.	0.9	15

#	Article	IF	CITATIONS
109	Semiâ€rational evolution of the 3â€(3â€hydroxyalkanoyloxy)alkanoate (<scp>HAA</scp>) synthase RhlA to improve rhamnolipid production in <i>Pseudomonas aeruginosa</i> and <i>Burkholderia glumae</i> . FEBS Journal, 2019, 286, 4036-4059.	4.7	15
110	Aspergillus Is Inhibited by Pseudomonas aeruginosa Volatiles. Journal of Fungi (Basel, Switzerland), 2020, 6, 118.	3.5	15
111	Cationic Ru ^{II} Cyclopentadienyl Complexes with Antifungal Activity against Several <i>Candida</i> Species. ChemBioChem, 2020, 21, 3112-3119.	2.6	14
112	Synthesis and Antimicrobial Activity of <i>Burkholderia</i> Related 4-Hydroxy-3-methyl-2-alkenylquinolines (HMAQs) and Their <i>N</i> -Oxide Counterparts. Journal of Natural Products, 2020, 83, 2145-2154.	3.0	14
113	Characterization of the biocontrol activity of three bacterial isolates against the phytopathogen <i>Erwinia amylovora</i> . MicrobiologyOpen, 2021, 10, e1202.	3.0	14
114	Systematic Mutational Analysis of the Putative Hydrolase PqsE: Toward a Deeper Molecular Understanding of Virulence Acquisition in Pseudomonas aeruginosa. PLoS ONE, 2013, 8, e73727.	2.5	13
115	Burkholderia thailandensis Methylated Hydroxyalkylquinolines: Biosynthesis and Antimicrobial Activity in Cocultures. Applied and Environmental Microbiology, 2020, 86, .	3.1	12
116	Swarming motility growth favours the emergence of a subpopulation of <scp><i>Pseudomonas aeruginosa</i></scp> quorumâ€sensing mutants. Environmental Microbiology, 2020, 22, 2892-2906.	3.8	12
117	Total synthesis, isolation, surfactant properties, and biological evaluation of ananatosides and related macrodilactone-containing rhamnolipids. Chemical Science, 2021, 12, 7533-7546.	7.4	12
118	Structural determination of ananatoside A: An unprecedented 15-membered macrodilactone-containing glycolipid from Pantoea ananatis. Carbohydrate Research, 2019, 471, 13-18.	2.3	11
119	Two <i>rsaM</i> Homologues Encode Central Regulatory Elements Modulating Quorum Sensing in Burkholderia thailandensis. Journal of Bacteriology, 2018, 200, .	2.2	10
120	Changes in polyhydroxyalkanoate granule accumulation make optical density measurement an unreliable method for estimating bacterial growth in <i>Burkholderia thailandensis</i> . Canadian Journal of Microbiology, 2020, 66, 256-262.	1.7	9
121	Culture Medium Optimization for Production of Rhamnolipids by Burkholderia glumae. Colloids and Interfaces, 2018, 2, 49.	2.1	8
122	Gamma irradiation triggers a global stress response in Escherichia coli O157:H7 including base and nucleotides excision repair pathways. Microbial Pathogenesis, 2020, 149, 104342.	2.9	8
123	A High-Throughput Short Sequence Typing Scheme for Serratia marcescens Pure Culture and Environmental DNA. Applied and Environmental Microbiology, 2021, 87, e0139921.	3.1	8
124	Phase variation and antigenic variation. , 2005, , 277-322.		7
125	Antibacterial properties of the pituitary adenylate cyclase-activating polypeptide: A new human antimicrobial peptide. PLoS ONE, 2018, 13, e0207366.	2.5	7
126	Complex autoregulation of the post-transcriptional regulator RsmA in Pseudomonas aeruginosa. Microbiology (United Kingdom), 2015, 161, 1889-1896.	1.8	7

#	Article	IF	CITATIONS
127	Altered Pseudomonas Strategies to Inhibit Surface Aspergillus Colonies. Frontiers in Cellular and Infection Microbiology, 2021, 11, 734296.	3.9	7
128	Phenylacetyl Coenzyme A, Not Phenylacetic Acid, Attenuates CepIR-Regulated Virulence in Burkholderia cenocepacia. Applied and Environmental Microbiology, 2019, 85, .	3.1	7
129	High absorption of endocrine disruptors by Hytrel: towards the development of a twoâ€phase partitioning bioreactor. Journal of Chemical Technology and Biotechnology, 2013, 88, 119-125.	3.2	6
130	Exposure to Freeze–Thaw Conditions Increases Virulence of <i>Pseudomonas aeruginosa</i> to <i>Drosophila melanogaster</i> . Environmental Science & Technology, 2018, 52, 14180-14186.	10.0	6
131	Effect of β-lactam antibiotic resistance gene expression on the radio-resistance profile of E. coli O157:H7. Heliyon, 2018, 4, e00999.	3.2	6
132	Live imaging and quantitative analysis of <i>Aspergillus fumigatus</i> growth and morphology during inter-microbial interaction with <i>Pseudomonas aeruginosa</i> . Virulence, 2020, 11, 1329-1336.	4.4	6
133	The Fruit Fly as a Meeting Place for Microbes. Cell Host and Microbe, 2008, 4, 505-507.	11.0	5
134	Molecular Modifications of the Pseudomonas Quinolone Signal in the Intermicrobial Competition with Aspergillus. Journal of Fungi (Basel, Switzerland), 2021, 7, 343.	3.5	5
135	Faucet aerator design influences aerosol size distribution and microbial contamination level. Science of the Total Environment, 2021, 775, 145690.	8.0	5
136	Use of Alternative Gelling Agents Reveals the Role of Rhamnolipids in Pseudomonas aeruginosa Surface Motility. Biomolecules, 2021, 11, 1468.	4.0	5
137	Editorial: Biosurfactants: New Insights in Their Biosynthesis, Production and Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 769899.	4.1	5
138	Surface Motility Favors Codependent Interaction between Pseudomonas aeruginosa and Burkholderia cenocepacia. MSphere, 2022, 7, .	2.9	5
139	Effect of Î ³ -irradiation on gene expression of heat shock proteins in the foodborne pathogen <i>Escherichia coli</i> O157:H7. International Journal of Radiation Biology, 2014, 90, 268-273.	1.8	4
140	Cyclic-di-GMP levels affect Pseudomonas aeruginosa fitness in the presence of imipenem. Environmental Microbiology, 2014, 16, 1321-33.	3.8	4
141	Studies of Pseudomonas aeruginosa Mutants Indicate Pyoverdine as the Central Factor in Inhibition of Aspergillus fumigatus Biofilm. Open Forum Infectious Diseases, 2017, 4, S116-S116.	0.9	3
142	Novel â€~Bacteriospray' Method Facilitates the Functional Screening of Metagenomic Libraries for Antimicrobial Activity. Methods and Protocols, 2019, 2, 4.	2.0	3
143	The symbiotic complex of <i>Dendroctonus simplex</i> : implications in the beetle attack and its life cycle. Bulletin of Entomological Research, 2019, 109, 723-732.	1.0	3
144	The Pseudomonas aeruginosa Population among Cystic Fibrosis Patients in Quebec, Canada: a Disease Hot Spot without Known Epidemic Isolates. Journal of Clinical Microbiology, 2019, 57, .	3.9	2

#	Article	IF	CITATIONS
145	Presence of the Hmq System and Production of 4-Hydroxy-3-Methyl-2-Alkylquinolines Are Heterogeneously Distributed between Burkholderia cepacia Complex Species and More Prevalent among Environmental than Clinical Isolates. Microbiology Spectrum, 2021, 9, e0012721.	3.0	2
146	Total synthesis of the proposed structures of gladiosides I and II. Carbohydrate Research, 2021, 507, 108373.	2.3	1
147	Total Synthesis of a Chimeric Glycolipid Bearing the Partially Acetylated Backbone of Sponge-Derived Agminoside E. Journal of Organic Chemistry, 2021, 86, 15357-15375.	3.2	1
148	A multi-host approach to identify a transposon mutant of Pseudomonas aeruginosa LESB58 lacking full virulence. BMC Research Notes, 2018, 11, 198.	1.4	0
149	Development of a New High-Throughput Multilocus Sequence Typing Method to Monitor Causative Agents of Nosocomial Infections. Infection Control and Hospital Epidemiology, 2020, 41, s187-s187.	1.8	0