
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4601913/publications.pdf Version: 2024-02-01

ANNE RDIINET

#	Article	IF	CITATIONS
1	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	3.1	4
2	Long life depends on open communication. Nature Cell Biology, 2022, 24, 808-810.	10.3	0
3	Unwanted help from T cells in the aging central nervous system. Nature Aging, 2021, 1, 330-331.	11.6	2
4	In-depth triacylglycerol profiling using MS3 Q-Trap mass spectrometry. Analytica Chimica Acta, 2021, 1184, 339023.	5.4	4
5	Aging and Rejuvenation of Neural Stem Cells and Their Niches. Cell Stem Cell, 2020, 27, 202-223.	11.1	118
6	Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science, 2020, 369, .	12.6	147
7	Cell-Type-Specific Metabolic Profiling Achieved by Combining Desorption Electrospray Ionization Mass Spectrometry Imaging and Immunofluorescence Staining. Analytical Chemistry, 2020, 92, 13281-13289.	6.5	31
8	Old and new models for the study of human ageing. Nature Reviews Molecular Cell Biology, 2020, 21, 491-493.	37.0	17
9	Vertebrate diapause preserves organisms long term through Polycomb complex members. Science, 2020, 367, 870-874.	12.6	79
10	Personal aging markers and ageotypes revealed by deep longitudinal profiling. Nature Medicine, 2020, 26, 83-90.	30.7	225
11	Support cells in the brain promote longevity. Science, 2020, 367, 365-366.	12.6	2
12	Differentiation Drives Widespread Rewiring of the Neural Stem Cell Chaperone Network. Molecular Cell, 2020, 78, 329-345.e9.	9.7	66
13	Development of the African Killifish as a New Model to Study Aging and Suspended animation. Innovation in Aging, 2020, 4, 743-743.	0.1	0
14	Epigenetics and Aging in Killifish. Innovation in Aging, 2020, 4, 742-742.	0.1	0
15	Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature, 2019, 571, 205-210.	27.8	351
16	The Genetics of Aging: A Vertebrate Perspective. Cell, 2019, 177, 200-220.	28.9	177
17	Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses. Genome Research, 2019, 29, 697-709.	5.5	234
18	Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature, 2019, 574, 553-558.	27.8	187

#	Article	IF	CITATIONS
19	Turning back time with emerging rejuvenation strategies. Nature Cell Biology, 2019, 21, 32-43.	10.3	120
20	Linking Lipid Metabolism to Chromatin Regulation in Aging. Trends in Cell Biology, 2019, 29, 97-116.	7.9	96
21	Self-sperm induce resistance to the detrimental effects of sexual encounters with males in hermaphroditic nematodes. ELife, 2019, 8, .	6.0	20
22	Same path, different beginnings. Nature Neuroscience, 2018, 21, 159-160.	14.8	1
23	The African turquoise killifish: A research organism to study vertebrate aging and diapause. Aging Cell, 2018, 17, e12757.	6.7	118
24	Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science, 2018, 359, 1277-1283.	12.6	374
25	Cross-Platform Comparison of Untargeted and Targeted Lipidomics Approaches on Aging Mouse Plasma. Scientific Reports, 2018, 8, 17747.	3.3	81
26	The genome of Austrofundulus limnaeus offers insights into extreme vertebrate stress tolerance and embryonic development. BMC Genomics, 2018, 19, 155.	2.8	21
27	Loss of CaMKI Function Disrupts Salt Aversive Learning in <i>C. elegans</i> . Journal of Neuroscience, 2018, 38, 6114-6129.	3.6	18
28	Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage. Cell Reports, 2017, 18, 777-790.	6.4	270
29	Interaction between epigenetic and metabolism in aging stem cells. Current Opinion in Cell Biology, 2017, 45, 1-7.	5.4	62
30	Progranulin, lysosomal regulation and neurodegenerative disease. Nature Reviews Neuroscience, 2017, 18, 325-333.	10.2	201
31	<scp>AMPK</scp> α1â€ <scp>LDH</scp> pathway regulates muscle stem cell selfâ€renewal by controlling metabolic homeostasis. EMBO Journal, 2017, 36, 1946-1962.	7.8	95
32	Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature, 2017, 544, 185-190.	27.8	245
33	Dynamic landscape and regulation of RNA editing in mammals. Nature, 2017, 550, 249-254.	27.8	495
34	Chromatin accessibility dynamics reveal novel functional enhancers in <i>C. elegans</i> . Genome Research, 2017, 27, 2096-2107.	5.5	142
35	Non-model model organisms. BMC Biology, 2017, 15, 55.	3.8	164
36	FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8514-8519.	7.1	24

#	Article	IF	CITATIONS
37	Bursts of Reprogramming: A Path to Extend Lifespan?. Cell, 2016, 167, 1672-1674.	28.9	8
38	Efficient genome engineering approaches for the short-lived African turquoise killifish. Nature Protocols, 2016, 11, 2010-2028.	12.0	68
39	Characterization of the direct targets of <scp>FOXO</scp> transcription factors throughout evolution. Aging Cell, 2016, 15, 673-685.	6.7	177
40	The Aging Epigenome. Molecular Cell, 2016, 62, 728-744.	9.7	362
41	Deconstructing Dietary Restriction: A Case for Systems Approaches in Aging. Cell Metabolism, 2016, 23, 395-396.	16.2	2
42	AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs. Trends in Cell Biology, 2016, 26, 190-201.	7.9	695
43	AMP-Activated Protein Kinase Directly Phosphorylates and Destabilizes Hedgehog Pathway Transcription Factor GLI1 in Medulloblastoma. Cell Reports, 2015, 12, 599-609.	6.4	73
44	The African Turquoise Killifish: A Model for Exploring Vertebrate Aging and Diseases in the Fast Lane. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 275-279.	1.1	37
45	Stem Cell Aging and Sex: Are We Missing Something?. Cell Stem Cell, 2015, 16, 588-590.	11.1	21
46	The African Turquoise Killifish Genome Provides Insights into Evolution and Genetic Architecture of Lifespan. Cell, 2015, 163, 1539-1554.	28.9	200
47	Women in Metabolism: Part 3. Cell Metabolism, 2015, 22, 949-953.	16.2	0
48	Lysosomal lipid lengthens life span. Science, 2015, 347, 32-33.	12.6	11
49	A Platform for Rapid Exploration of Aging and Diseases in a Naturally Short-Lived Vertebrate. Cell, 2015, 160, 1013-1026.	28.9	199
50	Lipid Profiles and Signals for Long Life. Trends in Endocrinology and Metabolism, 2015, 26, 589-592.	7.1	36
51	Identification of AMPK Phosphorylation Sites Reveals a Network of Proteins Involved in Cell Invasion and Facilitates Large-Scale Substrate Prediction. Cell Metabolism, 2015, 22, 907-921.	16.2	149
52	Shockingly Early: Chromatin-Mediated Loss of the Heat Shock Response. Molecular Cell, 2015, 59, 515-516.	9.7	2
53	Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nature Reviews Molecular Cell Biology, 2015, 16, 593-610.	37.0	515
54	High telomerase is a hallmark of undifferentiated spermatogonia and is required for maintenance of male germline stem cells. Genes and Development, 2015, 29, 2420-2434.	5.9	56

#	Article	IF	CITATIONS
55	Inhibition of Pluripotency Networks by the Rb Tumor Suppressor Restricts Reprogramming and Tumorigenesis. Cell Stem Cell, 2015, 16, 39-50.	11.1	166
56	Longevity Pathways in Mammalian Stem Cells. Annual Review of Gerontology and Geriatrics, 2014, 34, 1-39.	0.5	1
57	FOXO transcription factors: key regulators of cellular quality control. Trends in Biochemical Sciences, 2014, 39, 159-169.	7.5	450
58	Epigenetics of Aging and Aging-related Disease. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, S17-S20.	3.6	200
59	Sex specificity in the blood. Nature, 2014, 505, 488-489.	27.8	10
60	Males Shorten the Life Span of <i>C. elegans</i> Hermaphrodites via Secreted Compounds. Science, 2014, 343, 541-544.	12.6	150
61	Geroscience: Linking Aging to Chronic Disease. Cell, 2014, 159, 709-713.	28.9	1,709
62	H3K4me3 Breadth Is Linked to Cell Identity and Transcriptional Consistency. Cell, 2014, 158, 673-688.	28.9	404
63	FOXO3 Promotes Quiescence in Adult Muscle Stem Cells during the Process of Self-Renewal. Stem Cell Reports, 2014, 2, 414-426.	4.8	156
64	FOXO flips the longevity SWItch. Nature Cell Biology, 2013, 15, 444-446.	10.3	9
65	Hierarchical Mechanisms for Direct Reprogramming of Fibroblasts to Neurons. Cell, 2013, 155, 621-635.	28.9	531
66	FOXO3 Shares Common Targets with ASCL1 Genome-wide and Inhibits ASCL1-Dependent Neurogenesis. Cell Reports, 2013, 4, 477-491.	6.4	139
67	Bridging the transgenerational gap with epigenetic memory. Trends in Genetics, 2013, 29, 176-186.	6.7	198
68	Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain. Nature Cell Biology, 2013, 15, 614-624.	10.3	133
69	Chromatin Modifications as Determinants of Muscle Stem Cell Quiescence and Chronological Aging. Cell Reports, 2013, 4, 189-204.	6.4	463
70	FoxO6 regulates memory consolidation and synaptic function. Genes and Development, 2012, 26, 2780-2801.	5.9	116
71	Epigenetic memory of longevity in Caenorhabditis elegans. Worm, 2012, 1, 77-81.	1.0	13
72	Histone methylation makes its mark on longevity. Trends in Cell Biology, 2012, 22, 42-49.	7.9	168

#	Article	lF	CITATIONS
73	Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. Journal of Cell Science, 2012, 125, 5597-5608.	2.0	153
74	Aging and reprogramming: a two-way street. Current Opinion in Cell Biology, 2012, 24, 744-756.	5.4	136
75	Methylation by Set9 modulates FoxO3 stability and transcriptional activity. Aging, 2012, 4, 462-479.	3.1	76
76	Unbiased identification of novel AMPK substrates by chemical genetics. FASEB Journal, 2012, 26, 471.1.	0.5	0
77	A CRTCal Link between Energy and Life Span. Cell Metabolism, 2011, 13, 358-360.	16.2	3
78	Chemical Genetic Screen for AMPKα2 Substrates Uncovers a Network of Proteins Involved in Mitosis. Molecular Cell, 2011, 44, 878-892.	9.7	232
79	Energy metabolism in adult neural stem cell fate. Progress in Neurobiology, 2011, 93, 182-203.	5.7	253
80	The H3K27 demethylase UTXâ€1 regulates <i>C.Âelegans</i> lifespan in a germlineâ€independent, insulinâ€dependent manner. Aging Cell, 2011, 10, 980-990.	6.7	207
81	Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature, 2011, 479, 365-371.	27.8	562
82	MicroRNA programs in normal and aberrant stem and progenitor cells. Genome Research, 2011, 21, 798-810.	5.5	61
83	Transposon-Mediated Transgenesis in the Short-Lived African Killifish <i>Nothobranchius furzeri</i> , a Vertebrate Model for Aging. G3: Genes, Genomes, Genetics, 2011, 1, 531-538.	1.8	92
84	The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging, 2011, 3, 108-124.	3.1	193
85	Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature, 2010, 466, 383-387.	27.8	468
86	A FOXO–Pak1 transcriptional pathway controls neuronal polarity. Genes and Development, 2010, 24, 799-813.	5.9	83
87	Mapping Loci Associated With Tail Color and Sex Determination in the Short-Lived Fish <i>Nothobranchius furzeri</i> . Genetics, 2009, 183, 1385-1395.	2.9	67
88	When restriction is good. Nature, 2009, 458, 713-714.	27.8	10
89	AMPâ€activated Protein Kinase and FoxO Transcription Factors in Dietary Restriction–induced Longevity. Annals of the New York Academy of Sciences, 2009, 1170, 688-692.	3.8	112
90	Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in <i>C. elegans</i> . Aging Cell, 2009, 8, 113-127.	6.7	518

#	Article	IF	CITATIONS
91	FoxO3 Regulates Neural Stem Cell Homeostasis. Cell Stem Cell, 2009, 5, 527-539.	11.1	526
92	FoxO transcription factors in the maintenance of cellular homeostasis during aging. Current Opinion in Cell Biology, 2008, 20, 126-136.	5.4	519
93	Signaling networks in aging. Journal of Cell Science, 2008, 121, 407-412.	2.0	88
94	The Energy Sensor AMP-activated Protein Kinase Directly Regulates the Mammalian FOXO3 Transcription Factor. Journal of Biological Chemistry, 2007, 282, 30107-30119.	3.4	691
95	From stem to stern. Nature, 2007, 449, 288-291.	27.8	39
96	Aging and cancer: killing two birds with one worm. Nature Genetics, 2007, 39, 1306-1307.	21.4	4
97	FOXO transcription factors. Current Biology, 2007, 17, R113-R114.	3.9	219
98	An AMPK-FOXO Pathway Mediates Longevity Induced by a Novel Method of Dietary Restriction in C. elegans. Current Biology, 2007, 17, 1646-1656.	3.9	701
99	FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene, 2005, 24, 7410-7425.	5.9	1,135
100	Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase. Science, 2004, 303, 2011-2015.	12.6	2,913
101	PEA-15 Binding to ERK1/2 MAPKs Is Required for Its Modulation of Integrin Activation. Journal of Biological Chemistry, 2003, 278, 52587-52597.	3.4	52
102	14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. Journal of Cell Biology, 2002, 156, 817-828.	5.2	501
103	DNA Repair Pathway Stimulated by the Forkhead Transcription Factor FOXO3a Through the Gadd45 Protein. Science, 2002, 296, 530-534.	12.6	788
104	Transcription-dependent and -independent control of neuronal survival by the PI3K–Akt signaling pathway. Current Opinion in Neurobiology, 2001, 11, 297-305.	4.2	1,098
105	Protein Kinase SGK Mediates Survival Signals by Phosphorylating the Forkhead Transcription Factor FKHRL1 (FOXO3a). Molecular and Cellular Biology, 2001, 21, 952-965.	2.3	775
106	Substrate Recognition Domains within Extracellular Signal-regulated Kinase Mediate Binding and Catalytic Activation of Mitogen-activated Protein Kinase Phosphatase-3. Journal of Biological Chemistry, 2000, 275, 24613-24621.	3.4	88
107	Cell Survival Promoted by the Ras-MAPK Signaling Pathway by Transcription-Dependent and -Independent Mechanisms. Science, 1999, 286, 1358-1362.	12.6	1,741
108	Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor. Cell, 1999, 96, 857-868.	28.9	5,895

#	Article	IF	CITATIONS
109	Inhibition of the Mitogen-activated Protein Kinase Pathway Triggers B16 Melanoma Cell Differentiation. Journal of Biological Chemistry, 1998, 273, 9966-9970.	3.4	172
110	Growth Factor–induced p42/p44 MAPK Nuclear Translocation and Retention Requires Both MAPK Activation and Neosynthesis of Nuclear Anchoring Proteins. Journal of Cell Biology, 1998, 142, 625-633.	5.2	201
111	The Dual Specificity Mitogen-activated Protein Kinase Phosphatase-1 and -2 Are Induced by the p42/p44MAPK Cascade. Journal of Biological Chemistry, 1997, 272, 1368-1376.	3.4	330
112	Cyclin D1 Expression Is Regulated Positively by the p42/p44 and Negatively by the p38/HOG Pathway. Journal of Biological Chemistry, 1996, 271, 20608-20616.	3.4	1,103
113	The Mouse p44 Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase 1) Gene. Journal of Biological Chemistry, 1995, 270, 26986-26992.	3.4	61