Susumu Kuwabata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4601068/publications.pdf

Version: 2024-02-01

343 papers

14,311 citations

18465 62 h-index 30058 103 g-index

352 all docs 352 docs citations

352 times ranked

13476 citing authors

#	Article	IF	CITATIONS
1	Aluminum metal anode rechargeable batteries with sulfur–carbon composite cathodes and inorganic chloroaluminate ionic liquid. Chemical Communications, 2022, 58, 1518-1521.	2.2	5
2	Surface ligand chemistry on quaternary Ag(In _{i>xxxxxxxx<}	2.2	20
3	Onâ€Surface Metathesis of an Ionic Liquid on Ag(111). Chemistry - A European Journal, 2022, , .	1.7	1
4	Impact of sp ² carbon material species on Pt nanoparticle-based electrocatalysts produced by one-pot pyrolysis methods with ionic liquids. RSC Advances, 2022, 12, 14268-14277.	1.7	1
5	Encapsulation of AgInS ₂ /GaS _{<i>x</i>} core/shell quantum dots in In-fumarate metal–organic frameworks for stability enhancement. CrystEngComm, 2022, 24, 3715-3723.	1.3	4
6	Recent Progress of Multinary Semiconductor Quantum Dots Towards Luminescent and Photoelectrochemical Applications. Denki Kagaku, 2022, 90, 115-121.	0.0	0
7	Synthesis of multicolor-emitting nitrogen–sulfur co-doped carbon dots and their photochemical studies for sensing applications. RSC Advances, 2022, 12, 20054-20061.	1.7	4
8	Photoluminescence Enhancement by Light Harvesting of Metal–Organic Frameworks Surrounding Semiconductor Quantum Dots. Chemistry of Materials, 2021, 33, 1607-1617.	3.2	24
9	[Paper] Green Electroluminescence Generated by Band-edge Transition in Ag-In-Ga-S/GaS _{<i>x</i>} Core/shell Quantum Dots. ITE Transactions on Media Technology and Applications, 2021, 9, 222-227.	0.3	5
10	Photoluminescence properties of quinary Ag $\hat{a}\in (In,Ga)\hat{a}\in (S,Se)$ quantum dots with a gradient alloy structure for $\langle i \rangle$ in vivo $\langle i \rangle$ bioimaging. Journal of Materials Chemistry C, 2021, 9, 12791-12801.	2.7	18
11	Room-Temperature Fabrication of Electrocatalyst for Oxygen Reduction Using Pt Nanoparticle-dispersed Protic Ionic Liquid with Poly(3,4-ethylenedioxythiophene). Electrochemistry, 2021, 89, 83-86.	0.6	7
12	Variations in Photoluminescence Intensity of a Quantum Dot Assembly Investigated by Its Adsorption on Cubic Metal–Organic Frameworks. Journal of Physical Chemistry C, 2021, 125, 8285-8293.	1.5	4
13	In Situ Monitoring of Lithium Metal Anodes and Their Solid Electrolyte Interphases by Transmission Electron Microscopy. Small Structures, 2021, 2, 2100018.	6.9	27
14	Synthesis and Pyrolysis of Fullerenolâ€stabilized Pt Nanocolloids as a unique Approach to Ptâ€doped Carbon. Chemistry - an Asian Journal, 2021, 16, 2280-2285.	1.7	4
15	In Situ Monitoring of Lithium Metal Anodes and Their Solid Electrolyte Interphases by Transmission Electron Microscopy. Small Structures, 2021, 2, 2170016.	6.9	O
16	Innovative Approach for Preparing a CNT-Supported Pt Nanoparticle Functional Electrocatalyst Using Protic Ionic Liquids. ACS Applied Energy Materials, 2021, 4, 7298-7308.	2.5	7
17	Luminescent Quaternary Ag(In _{<i>x</i>} Ga _{1â€"<i>x</i>})S ₂ /GaS _{<i>y</i>} Core/Shell Quantum Dots Prepared Using Dithiocarbamate Compounds and Photoluminescence Recovery via Post Treatment, Inorganic Chemistry, 2021, 60, 13101-13109.	1.9	30
18	Photoluminescence Stability Enhancement of Agâ€"Inâ€"Gaâ€"S/GaS _x Core/Shell Quantum Dots with Thicker Shells by the Addition of Gallium Diethyldithiocarbamate. Chemistry Letters, 2021, 50, 1863-1866.	0.7	12

#	Article	IF	CITATIONS
19	Adsorption, Wetting, Growth, and Thermal Stability of the Protic Ionic Liquid Diethylmethylammonium Trifluoromethanesulfonate on $Ag(111)$ and $Au(111)$. Langmuir, 2021, 37, 11552-11560.	1.6	5
20	Shape-controlled synthesis of Cu2O nanoparticles with single-digit nanoscale void space via ionic liquid/metal sputtering and their photoelectrochemical properties. Japanese Journal of Applied Physics, 2021, 60, SAAC01.	0.8	8
21	Lithium Electrodeposition in Single Molten Salt with Constant Lithium-Ion Concentration at Any Time and Location. Journal of the Electrochemical Society, 2020, 167, 070502.	1.3	3
22	One-Pot Synthesis of PtNi Alloy Nanoparticle-Supported Multiwalled Carbon Nanotubes in an Ionic Liquid Using a Staircase Heating Process. ACS Omega, 2020, 5, 25687-25694.	1.6	7
23	Hot electron transfer in Zn–Ag–In–Te nanocrystal–methyl viologen complexes enhanced with higher-energy photon excitation. RSC Advances, 2020, 10, 16361-16365.	1.7	6
24	Controlling the oxidation state of molybdenum oxide nanoparticles prepared by ionic liquid/metal sputtering to enhance plasmon-induced charge separation. RSC Advances, 2020, 10, 28516-28522.	1.7	10
25	Electroluminescence from band-edge-emitting AgInS2/GaSx core/shell quantum dots. Applied Physics Letters, 2020, 117, .	1.5	26
26	Inorganic AlCl ₃ –alkali metal thiocyanate ionic liquids as electrolytes for electrochemical Al technologies. Chemical Communications, 2020, 56, 15297-15300.	2.2	6
27	Lithium-ion battery performance enhanced by the combination of Si thin flake anodes and binary ionic liquid systems. Materials Advances, 2020, 1, 625-631.	2.6	9
28	Efficient quantum-dot light-emitting diodes using ZnS–AgInS2 solid-solution quantum dots in combination with organic charge-transport materials. Applied Physics Letters, 2020, 116, .	1.5	14
29	Analytical Measurements to Elucidate Structural Behavior of 2,5â€Dimethoxyâ€1,4â€benzoquinone During Charge and Discharge. ChemSusChem, 2020, 13, 2354-2363.	3.6	5
30	Tailored Photoluminescence Properties of Ag(In,Ga)Se ₂ Quantum Dots for Near-Infrared <i>In Vivo</i> Imaging. ACS Applied Nano Materials, 2020, 3, 3275-3287.	2.4	32
31	Electron microscopy using ionic liquids for life and materials sciences. Microscopy (Oxford,) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 Tf
32	Short-time and ultrasensitive electroanalytical technique for electrode active materials used in secondary batteries. Journal of Power Sources, 2020, 459, 228041.	4.0	0
33	Temperature dependences of photoluminescence intensities observed from AglnGaS and AglnGaS/GaSx core–shell nanoparticles. Journal of Nanophotonics, 2020, 14, 1.	0.4	1
34	PtNi Alloy Nanoparticle-Supported MWCNTs Produced in a Nickel(II) Oxalate Dihydrate Dispersed Ionic Liquid with Pt(acac) ₂ by One-Pot Pyrolysis Method. Electrochemistry, 2020, 88, 353-355.	0.6	1
35	Direct surface modification of semiconductor quantum dots with metal–organic frameworks. CrystEngComm, 2019, 21, 5568-5577.	1.3	21
36	Epoxy-Containing Ionic Liquids with Tunable Functionality. Molecules, 2019, 24, 2591.	1.7	1

#	Article	IF	CITATIONS
37	The Capacitor Properties of KOH Activated Porous Carbon Beads Derived from Polyacrylonitrile. Bulletin of the Chemical Society of Japan, 2019, 92, 832-839.	2.0	4
38	In-situ scanning electron microscope observation of electrode reactions related to battery material. Electrochimica Acta, 2019, 319, 158-163.	2.6	15
39	Platinum and PtNi Nanoparticle-Supported Multiwalled Carbon Nanotube Electrocatalysts Prepared by One-Pot Pyrolytic Synthesis with an Ionic Liquid. ACS Applied Energy Materials, 2019, 2, 4865-4872.	2.5	12
40	Enhanced Photoelectrochemical Properties of Znâ^'Agâ^'Inâ^'Te Nanocrystals with High Energy Photon Excitation. ChemNanoMat, 2019, 5, 1028-1035.	1.5	5
41	Electric Double Layer Capacitors Based on Polyacrylonitrile-derived Porous Carbon Beads: Effects of Particle Size and Composite. Electrochemistry, 2019, 87, 119-122.	0.6	2
42	Use of ionic liquid for X-ray micro-CT specimen preparation of imbibed seeds. Microscopy (Oxford,) Tj ETQq0 0 0	rgBT/Ove	erlogk 10 Tf 5
43	Core Nanoparticle Engineering for Narrower and More Intense Band-Edge Emission from AgInS2/GaSx Core/Shell Quantum Dots. Nanomaterials, 2019, 9, 1763.	1.9	21
44	Graphene Nanoplatelet Composite Cathode for a Chloroaluminate Ionic Liquid-Based Aluminum Secondary Battery. ACS Applied Energy Materials, 2018, 1, 2269-2274.	2.5	41
45	Rechargeable aluminum batteries utilizing a chloroaluminate inorganic ionic liquid electrolyte. Chemical Communications, 2018, 54, 4164-4167.	2.2	33
46	Enhanced Photocatalytic Activity of Zn–Ag–In–S Semiconductor Nanocrystals with a Dumbbell-Shaped Heterostructure. Journal of Physical Chemistry C, 2018, 122, 13705-13715.	1.5	23
47	Diffusion of Lithium Cation in Low-Melting Lithium Molten Salts. Journal of Physical Chemistry C, 2018, 122, 4144-4149.	1.5	7
48	Electrocatalyst: Ptâ∈Nanoparticleâ∈Supported Carbon Electrocatalysts Functionalized with a Protic Ionic Liquid and Organic Salt (Adv. Mater. Interfaces 3/2018). Advanced Materials Interfaces, 2018, 5, 1870010.	1.9	2
49	Physicochemical Properties and Electrochemical Behavior of Systematically Functionalized Aryltrifluoroborate-Based Room-Temperature Ionic Liquids. Journal of Physical Chemistry C, 2018, 122, 3286-3294.	1.5	11
50	Rod-shaped Zn–Ag–In–Te nanocrystals with wavelength-tunable band-edge photoluminescence in the near-IR region. Journal of Materials Chemistry C, 2018, 6, 2034-2042.	2.7	17
51	Graphene Nanoplatelet-Polysulfone Composite Cathodes for High-Power Aluminum Rechargeable Batteries. Electrochemistry, 2018, 86, 72-76.	0.6	11
52	Ptâ∈Nanoparticleâ∈Supported Carbon Electrocatalysts Functionalized with a Protic Ionic Liquid and Organic Salt. Advanced Materials Interfaces, 2018, 5, 1701123.	1.9	18
53	Operando Observation of Vacuum and Liquid Interface while Conducting Gold Sputtering onto Ionic Liquid for Preparation of Au Nanoparticles. Electrochemistry, 2018, 86, 223-225.	0.6	5
54	Wavelength-Tunable Band-Edge Photoluminescence of Nonstoichiometric Ag–In–S Nanoparticles via Ga ³⁺ Doping. ACS Applied Materials & Interfaces, 2018, 10, 42844-42855.	4.0	55

#	Article	IF	CITATIONS
55	Toward a More Accurate Understanding of Impedance Behaviors of Randles-type Equivalent Circuits. Review of Polarography, 2018, 64, 91-96.	0.0	1
56	In situ electron microscopy and X-ray photoelectron spectroscopy for high capacity anodes in next-generation ionic liquid-based Li batteries. Electrochimica Acta, 2018, 279, 136-142.	2.6	20
57	Platinum Nanoparticle-Supported Electrocatalysts Functionalized by Carbonization of Protic Ionic Liquid and Organic Salts. ACS Applied Energy Materials, 2018, 1, 3030-3034.	2.5	13
58	lonic liquid-based transmission electron microscopy for herpes simplex virus type 1. Biophysical Reviews, 2018, 10, 927-929.	1.5	9
59	Narrow band-edge photoluminescence from AgInS2 semiconductor nanoparticles by the formation of amorphous III–VI semiconductor shells. NPG Asia Materials, 2018, 10, 713-726.	3.8	91
60	Oxygen reduction electrocatalysts sophisticated by using Pt nanoparticle-dispersed ionic liquids with electropolymerizable additives. Journal of Materials Chemistry A, 2018, 6, 11853-11862.	5. 2	19
61	Preparation of low-toxic Zn-Ag-In-Te quantum dots with tunable near-IR emission toward optical applications. , 2018, , .		0
62	Enhanced visible light response of a WO $<$ sub $>3sub> photoelectrode with an immobilized fibrous gold nanoparticle assembly using an amyloid-\hat{l}^2 peptide. RSC Advances, 2017, 7, 1089-1092.$	1.7	2
63	Electrocatalytic Activity of Bimetallic Pd-Au Particle Films Prepared by Sequential Sputter Deposition of Pd and Au onto Hydroxyl-functionalized Ionic Liquid. Chemistry Letters, 2017, 46, 956-959.	0.7	9
64	SEM as a Facile Tool for Real-Time Monitoring of Microcrystal Growth during Electrodeposition: The Merit of Ionic Liquids. Analytical Chemistry, 2017, 89, 7249-7254.	3.2	10
65	Physicochemical properties of phenyltrifluoroborate-based room temperature ionic liquids. Journal of Molecular Liquids, 2017, 246, 236-243.	2.3	14
66	Visualization of Si Anode Reactions in Coin-Type Cells via Operando Scanning Electron Microscopy. ACS Applied Materials & Diterfaces, 2017, 9, 35511-35515.	4.0	26
67	Graphene-Coated Activated Carbon Fiber Cloth Positive Electrodes for Aluminum Rechargeable Batteries with a Chloroaluminate Room-Temperature Ionic Liquid. Journal of the Electrochemical Society, 2017, 164, A2468-A2473.	1.3	16
68	Boron and nitrogen co-doped ordered microporous carbons with high surface areas. Chemical Communications, 2017, 53, 13348-13351.	2.2	21
69	Improvement of photoluminescence stability of ZnS-AgInS2 nanoparticles through interactions with ionic liquids. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 371-375.	2.0	4
70	Controlling the Size and Chemical Composition of Multinary Semiconductor Nanocrystals for Improving Photochemical Functions. Hyomen Kagaku, 2017, 38, 18-23.	0.0	0
71	電気化å¦ä⅓šç¬¬83回æ~¥å£å§ä⅓šã,'å§é~å§å¦ã§é~‹å,¬ã™ã,‹ã«ã,ãŸã£ã√. Electrochemistry, 2016, 84, 129-	-1028.	0
72	Evaluation of Surface Ligands on Semiconductor Nanoparticle Surfaces Using Electron Transfer to Redox Species. Journal of Physical Chemistry C, 2016, 120, 16012-16023.	1.5	11

#	Article	IF	CITATIONS
73	Formation of a Pt-Decorated Au Nanoparticle Monolayer Floating on an Ionic Liquid by the Ionic Liquid/Metal Sputtering Method and Tunable Electrocatalytic Activities of the Resulting Monolayer. ACS Applied Materials & Interfaces, 2016, 8, 10874-10883.	4.0	26
74	Controlling Shape Anisotropy of ZnS–AgInS ₂ Solid Solution Nanoparticles for Improving Photocatalytic Activity. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27151-27161.	4.0	53
75	Single-step preparation of indium tin oxide nanocrystals dispersed in ionic liquids via oxidation of molten In–Sn alloys. Chemical Communications, 2016, 52, 12241-12244.	2.2	2
76	Alkali Metal Salts with Designable Aryltrifluoroborate Anions. Journal of Physical Chemistry B, 2016, 120, 9468-9476.	1.2	8
77	Preface to the Kohei Uosaki Festschrift: Electrochemistry of Ordered Interfaces—Design, Construction, and Interrogation of Functional Electrochemical Interphases with Atomic/Molecular Resolution. Journal of Physical Chemistry C, 2016, 120, 15527-15529.	1.5	2
78	Highly durable Pt nanoparticle-supported carbon catalysts for the oxygen reduction reaction tailored by using an ionic liquid thin layer. Journal of Materials Chemistry A, 2016, 4, 12152-12157.	5.2	43
79	In situ Scanning Electron Microscopy of Silicon Anode Reactions in Lithium-lon Batteries during Charge/Discharge Processes. Scientific Reports, 2016, 6, 36153.	1.6	65
80	Photocatalytic Properties of TiO ₂ Composites Immobilized with Gold Nanoparticle Assemblies Using the Streptavidin–Biotin Interaction. Langmuir, 2016, 32, 6459-6467.	1.6	14
81	Multifunctional electropolymerizable carbazole-based ionic liquids. RSC Advances, 2016, 6, 15735-15744.	1.7	5
82	Crystal phase-controlled synthesis of rod-shaped AgInTe ₂ nanocrystals for in vivo imaging in the near-infrared wavelength region. Nanoscale, 2016, 8, 5435-5440.	2.8	49
83	Mannose-displaying fluorescent framboidal nanoparticles containing phenylboronic acid groups as a potential drug carrier for macrophage targeting. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1174-1181.	2.5	9
84	Fine Patterning of Silver Metal by Electron Beam Irradiation onto Room-temperature Ionic Liquid. Chemistry Letters, 2015, 44, 312-314.	0.7	8
85	Double Layer Capacitance Properties of Monodisperse Carbon Particles with High Porosity Derived from Polyacrylonitrile Synthesized by Dispersion Polymerization. Electrochemistry, 2015, 83, 348-350.	0.6	6
86	Electron Microscope Observation of Soft Materials Using Ionic Liquids. Hyomen Kagaku, 2015, 36, 195-200.	0.0	0
87	Electrodeposition of Al-W-Mn Ternary Alloys from the Lewis Acidic Aluminum Chlorideâ^1-Ethyl-3-methylimidazolium Chloride Ionic Liquid. Journal of the Electrochemical Society, 2015, 162, D405-D411.	1.3	10
88	Synthesis of alloy AuCu nanoparticles with the L1 ₀ structure in an ionic liquid using sputter deposition. Dalton Transactions, 2015, 44, 4186-4194.	1.6	33
89	Simple observation of Streptococcus mutans biofilm by scanning electron microscopy using ionic liquids. AMB Express, 2015, 5, 6.	1.4	60
90	<i>In situ</i> SEM observation of the Si negative electrode reaction in an ionic-liquid-based lithium-ion secondary battery. Microscopy (Oxford, England), 2015, 64, 159-168.	0.7	37

#	Article	IF	Citations
91	Single-step preparation of two-dimensionally organized gold particles via ionic liquid/metal sputter deposition. Physical Chemistry Chemical Physics, 2015, 17, 13150-13159.	1.3	26
92	Controlling the Electronic Energy Structure of ZnS–AglnS ₂ Solid Solution Nanocrystals for Photoluminescence and Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2015, 119, 24740-24749.	1.5	122
93	Direct Observation of Short-Range Structural Coherence During a Charge Transfer Induced Spin Transition in a CoFe Prussian Blue Analogue by Transmission Electron Microscopy. Journal of the American Chemical Society, 2015, 137, 14686-14693.	6.6	20
94	Ultrathin oxide shell coating of metal nanoparticles using ionic liquid/metal sputtering. Journal of Materials Chemistry A, 2015, 3, 6177-6186.	5. 2	37
95	Interaction between living cells and polymeric particles: potential application of ionic liquid for evaluating the cellular uptake of biodegradable polymeric particles composed of poly(amino acid). Polymer Journal, 2015, 47, 631-638.	1.3	6
96	Well-controlled synthesis of wurtzite-type Cu ₂ ZnSnS ₄ nanoparticles using multiple sulfur sources via a two-step heating process. CrystEngComm, 2015, 17, 174-182.	1.3	10
97	SEM Observation of Wet Lily Pollen Grains Pretreated with Ionic Liquid. Japanese Society for Horticultural Science, 2014, 83, 317-321.	0.8	5
98	Widely Controllable Electronic Energy Structure of ZnSe–AgInSe ₂ Solid Solution Nanocrystals for Quantum-Dot-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 29517-29524.	1.5	50
99	Development of an electrochemical cell for <i>in situ</i> transmission electron microscopy observation. Microscopy (Oxford, England), 2014, 63, 481-486.	0.7	11
100	lonic Liquid Preparation for SEM Observation of Minute Crustacean. Microscopy and Microanalysis, 2014, 20, 1016-1017.	0.2	8
101	Electrochemical Energy Storage Device with a Lewis Acidic AlBr ₃ â°1-Ethyl-3-methylimidazolioum Bromide Room-Temperature Ionic Liquid. Journal of the Electrochemical Society, 2014, 161, A908-A914.	1.3	19
102	Electrodeposition of Al-W Alloys in the Lewis Acidic Aluminum Chlorideâ '1-Ethyl-3-Methylimidazolium Chloride Ionic Liquid. Journal of the Electrochemical Society, 2014, 161, D405-D412.	1.3	18
103	Photofunctional Materials Fabricated with Chalcopyrite-Type Semiconductor Nanoparticles Composed of AgInS ₂ and Its Solid Solutions. Journal of Physical Chemistry Letters, 2014, 5, 336-347.	2.1	115
104	An ionic liquid-Fe3O4 nanoparticles-graphite composite electrode used for nonenzymatic electrochemical determination of hydrogen peroxide. Journal of Electroanalytical Chemistry, 2014, 729, 109-115.	1.9	14
105	Atomic Resolution Imaging of Gold Nanoparticle Generation and Growth in Ionic Liquids. Journal of the American Chemical Society, 2014, 136, 13789-13797.	6.6	61
106	Cadmium-Free Sugar-Chain-Immobilized Fluorescent Nanoparticles Containing Low-Toxicity ZnS-AgInS ₂ Cores for Probing Lectin and Cells. Bioconjugate Chemistry, 2014, 25, 286-295.	1.8	41
107	Controllable electronic energy structure of size-controlled Cu ₂ ZnSnS ₄ nanoparticles prepared by a solution-based approach. Physical Chemistry Chemical Physics, 2014, 16, 672-675.	1.3	28
108	Visualization of Electrochemical Reactions by Redox-dependent Quenching of Photoluminescence from ZnS-AgInS2 Solid Solution Semiconductor Nanoparticles. Electrochemistry, 2014, 82, 338-340.	0.6	2

#	Article	IF	Citations
109	New Preparation Method using Ionic Liquid for Fast and Reliable SEM Observation of Biological Specimens. Microscopy and Microanalysis, 2014, 20, 1012-1013.	0.2	12
110	Three-dimensional micro/nano-scale structure fabricated by combination of non-volatile polymerizable RTIL and FIB irradiation. Scientific Reports, 2014, 4, 3722.	1.6	24
111	SEM Observation of Hydrous Superabsorbent Polymer Pretreated with Room-Temperature Ionic Liquids. PLoS ONE, 2014, 9, e91193.	1.1	21
112	Colloidal Syntheses of Semiconductor Nanoparticles with Tunable Photoluminescence in Visible-Light Region and Their Application to Photo-functional Materials. Journal of the Japan Society of Colour Material, 2014, 87, 430-435.	0.0	0
113	Photoinduced Electron Transfer of ZnS–AgInS2 Solid-Solution Semiconductor Nanoparticles: Emission Quenching and Photocatalytic Reactions Controlled by Electrostatic Forces. Journal of Physical Chemistry C, 2013, 117, 15667-15676.	1.5	18
114	Composition-Dependent Photoelectrochemical Properties of Nonstoichiometric Cu ₂ ZnSnS ₄ Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 21055-21063.	1.5	16
115	Composition-dependent electrocatalytic activity of AuPd alloy nanoparticles prepared via simultaneous sputter deposition into an ionic liquid. Physical Chemistry Chemical Physics, 2013, 15, 7286.	1.3	57
116	In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte. Physical Chemistry Chemical Physics, 2013, 15, 18600.	1.3	233
117	ZnS–AgInS2 nanoparticles as a temperature sensor. Sensors and Actuators B: Chemical, 2013, 176, 505-508.	4.0	42
118	Plasmon-Enhanced Photoluminescence and Photocatalytic Activities of Visible-Light-Responsive ZnS-AgInS2 Solid Solution Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 2511-2520.	1.5	51
119	Electrodeposition of aluminum–hafnium alloy from the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt. Journal of Solid State Electrochemistry, 2013, 17, 409-417.	1.2	18
120	Supramolecular Linear Assemblies of Cytochrome b 562 Immobilized on a Gold Electrode. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 172-179.	1.9	9
121	Physicochemical properties of 1-alkyl-3-methylimidazolium chloride–urea melts. Electrochimica Acta, 2013, 100, 285-292.	2.6	14
122	Physicochemical Properties of Tri <i>-n</i> -butylalkylphosphonium Cation-Based Room-Temperature lonic Liquids. Journal of Physical Chemistry B, 2013, 117, 15051-15059.	1.2	32
123	Basolateral Mg2+ Extrusion via CNNM4 Mediates Transcellular Mg2+ Transport across Epithelia: A Mouse Model. PLoS Genetics, 2013, 9, e1003983.	1.5	130
124	Simple Observation of the Interaction between Nanoparticles and Cells by Scanning Electron Microscopy Employing Ionic Liquid. Bulletin of the Chemical Society of Japan, 2013, 86, 153-158.	2.0	8
125	Shape-controlled Synthesis of ZnS–CuInS2–AgInS2 Solid Solution Nanoparticles and Their Photoluminescence Properties. Chemistry Letters, 2013, 42, 171-173.	0.7	3
126	$1 \ddot{1}^4 Z \tilde{a}, \tilde{a}, \tilde{a} \tilde{f}^3 \tilde{a} \tilde{f}^3 \tilde{a} \tilde{f}^9 \tilde{a}, \tilde{a}^9 \tilde{a}, \tilde{a}^6 \tilde{a}^6 \tilde{a}, \tilde{a}^6 $	63 5.6 40.	0

#	Article	IF	CITATIONS
127	The Effect of Hydrophilic Ionic Liquids 1-Ethyl-3-Methylimidazolium Lactate and Choline Lactate on Lipid Vesicle Fusion. PLoS ONE, 2013, 8, e85467.	1.1	25
128	Development of Electron Microscopy Techniques Using Ionic Liquid. Journal of the Vacuum Society of Japan, 2013, 56, 83-87.	0.3	0
129	Ambipolar transport in bulk crystals of a topological insulator by gating with ionic liquid. Physical Review B, 2012, 86, .	1.1	29
130	Observation of Electrochemical Reaction and Biological Specimen by Novel Analytical Technique Combined with Room-Temperature Ionic Liquid and Scanning Electron Microscope. Electrochemistry, 2012, 80, 308-311.	0.6	21
131	Introduction of Ionic Liquid to Vacuum Conditions for Development of Material Productions and Analyses. Electrochemistry, 2012, 80, 498-503.	0.6	5
132	Solution-phase Synthesis of Stannite-type Ag2ZnSnS4 Nanoparticles for Application to Photoelectrode Materials. Chemistry Letters, 2012, 41, 1009-1011.	0.7	40
133	Platinum nanoparticle immobilization onto carbon nanotubes using Pt-sputtered room-temperature ionic liquid. RSC Advances, 2012, 2, 8262.	1.7	59
134	Preparation of gold nanoparticles using reactive species produced in room-temperature ionic liquids by accelerated electron beam irradiation. RSC Advances, 2012, 2, 11801.	1.7	15
135	Various metal nanoparticles produced by accelerated electron beam irradiation of room-temperature ionic liquid. Chemical Communications, 2012, 48, 1925.	2.2	39
136	Photosensitization of ZnO rod electrodes with AgInS ₂ nanoparticles and ZnS-AgInS ₂ solid solution nanoparticles for solar cell applications. RSC Advances, 2012, 2, 552-559.	1.7	46
137	Temperature-Responsive One-Dimensional Nanogels Formed by the Cross-Linker-Aided Single Particle Nanofabrication Technique. ACS Applied Materials & Samp; Interfaces, 2012, 4, 5492-5497.	4.0	15
138	Gold Nanoparticle Assisted Self-Assembly and Enhancement of Charge Carrier Mobilities of a Conjugated Polymer. Journal of Physical Chemistry C, 2012, 116, 17343-17350.	1.5	19
139	Metal-lon Diffusion in Ionic Liquid Studied by Electrochemical Scanning Electron Microscopy with X-ray Fluorescence Spectrometry. Journal of Physical Chemistry C, 2012, 116, 20902-20907.	1.5	20
140	Tunable Photoelectrochemical Properties of Chalcopyrite AgInS ₂ Nanoparticles Size-Controlled with a Photoetching Technique. Journal of Physical Chemistry C, 2012, 116, 21895-21902.	1.5	51
141	Stable Sugarâ€Chainâ€Immobilized Fluorescent Nanoparticles for Probing Lectin and Cells. Chemistry - an Asian Journal, 2012, 7, 2678-2682.	1.7	14
142	Compositional control of AuPt nanoparticles synthesized in ionic liquids by the sputter deposition technique. CrystEngComm, 2012, 14, 4922.	1.3	61
143	Size-dependent Photoelectrochemical Properties of Semiconducting Cu2ZnSnS4 Nanoparticles. ECS Meeting Abstracts, 2012, , .	0.0	0
144	Chromosome observation by scanning electron microscopy using ionic liquid. Microscopy Research and Technique, 2012, 75, 1113-1118.	1.2	41

#	Article	IF	CITATIONS
145	Photocurrent Generation from Hierarchical Zincâ€Substituted Hemoprotein Assemblies Immobilized on a Gold Electrode. Angewandte Chemie - International Edition, 2012, 51, 2628-2631.	7.2	45
146	Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles. Journal of Materials Chemistry, 2012, 22, 12851.	6.7	135
147	Use of ionic liquid in fungal taxonomic study of ultrastructure of basidiospore ornamentation. Mycological Progress, 2012, 11, 343-347.	0.5	17
148	Observation of Live Ticks (Haemaphysalis flava) by Scanning Electron Microscopy under High Vacuum Pressure. PLoS ONE, 2012, 7, e32676.	1.1	12
149	Size and shape of Au nanoparticles formed in ionic liquids by electron beam irradiation. Physical Chemistry Chemical Physics, 2011, 13, 14823.	1.3	39
150	Modulating the immobilization process of Au nanoparticles on TiO2(110) by electrostatic interaction between the surface and ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 13585.	1.3	12
151	Fabrication of Nanoframe Structures by Site-selective Assembly of Gold Nanoparticles on Silver Cubes in an Ionic Liquid. Chemistry Letters, 2011, 40, 84-86.	0.7	14
152	In situ Electron Microscope Observation of Electrochemical Reactions using Room Temperature Ionic Liquids as Electrolytes. Review of Polarography, 2011, 57, 93-99.	0.0	0
153	One-Pot Synthesis of Water-Soluble Nanoparticles of ZnS-AgInS2 Solid Solution with Controllable Photoluminescence. Electrochemistry, 2011, 79, 790-792.	0.6	6
154	Long Term Optical Properties of ZnS-AgInS2 and AgInS2-AgGaS2 Solid-Solution Semiconductor Nanoparticles Dispersed in Polymer Matrices. Electrochemistry, 2011, 79, 813-816.	0.6	6
155	A remarkable effect of ionic liquids in transition-metal-free aerobic oxidation of benzylic alcohols. Tetrahedron Letters, 2011, 52, 5392-5394.	0.7	23
156	Ionic liquid enables simple and rapid sample preparation of human culturing cells for scanning electron microscope analysis. Microscopy Research and Technique, 2011, 74, 415-420.	1.2	65
157	Scanning electron microscopy with an ionic liquid reveals the loss of mitotic protrusions of cells during the epithelial–mesenchymal transition. Microscopy Research and Technique, 2011, 74, 1024-1031.	1.2	38
158	Comparative study of hydrophilic and hydrophobic ionic liquids for observing cultured human cells by scanning electron microscopy. Microscopy Research and Technique, 2011, 74, 1104-1108.	1.2	22
159	Design, Synthesis, and Electrochemistry of Roomâ€Temperature Ionic Liquids Functionalized with Propylene Carbonate. Angewandte Chemie - International Edition, 2011, 50, 1310-1313.	7.2	67
160	Nonvolatile RTILâ€Based Artificial Muscle: Actuation Mechanism Identified by In Situ EDX Analysis. Chemistry - A European Journal, 2011, 17, 11122-11126.	1.7	22
161	SEM Observation of Wet Biological Specimens Pretreated with Roomâ€Temperature Ionic Liquid. ChemBioChem, 2011, 12, 2547-2550.	1.3	75
162	Surface-plasmon-enhanced photocurrent generation of CdTe nanoparticle/titania nanosheet composite layers on Au particulate films. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 244-249.	2.0	8

#	ARTICLE hemical synthesis and superconducting phase diagram of Cu <mml:math 1998="" display="inline" http:="" math="" ml"="" www.w3.org="" xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</th><th>IF</th><th>Citations</th></tr><tr><td>163</td><td>/><mml:mi>x</mml:mi>x</mml:msub></mml:math>Bi<mml:math xmlns:mml="><mml:msub><mml:mrow></mml:mrow><mml:mn></mml:mn></mml:msub></mml:math> Early and the state of <td>1.1</td> <td>112</td>	1.1	112
164	Scanning Electron Microscope Observation of Concentration Profile in Ionic Liquid Caused by Electrochemical Reaction. ECS Transactions, 2010, 25, 15-22.	0.3	0
165	Studies on Reaction Conditions for Size-selective Photoetching of Cadmium Telluride Nanocrystals. Electrochemistry, 2010, 78, 170-174.	0.6	0
166	Fabrication of Transition Metal Oxide Nanoparticles Highly Dispersed in Ionic Liquids by Sputter Deposition. Chemistry Letters, 2010, 39, 1072-1074.	0.7	20
167	Palladium Nanoparticles in Ionic Liquid by Sputter Deposition as Catalysts for Suzuki–Miyaura Coupling in Water. Chemistry Letters, 2010, 39, 1069-1071.	0.7	43
168	Immobilization of ZnS–AgInS2 Solid Solution Nanoparticles on ZnO Rod Array Electrodes and Their Photoresponse with Visible Light Irradiation. Chemistry Letters, 2010, 39, 619-621.	0.7	10
169	New Frontiers in Materials Science Opened by Ionic Liquids. Advanced Materials, 2010, 22, 1196-1221.	11.1	803
170	Nanoparticleâ€Dispersed Liquid Crystals Fabricated by Sputter Doping. Advanced Materials, 2010, 22, 622-626.	11.1	81
171	Oxygen reduction catalytic ability of platinum nanoparticles prepared by room-temperature ionic liquid-sputtering method. Journal of Power Sources, 2010, 195, 5980-5985.	4.0	58
172	Fundamental Research on Biomedical Application of Al-Mo-Ti Alloy Electrodeposited from AlCl ₃ â€'1-Ethyl-3-methylimidazolium Chloride Melt. Transactions of the Materials Research Society of Japan, 2010, 35, 43-46.	0.2	2
173	(Invited) Emission Quenching of Semiconductor Quantum Dots and its Application to Biosensing. ECS Transactions, 2010, 28, 257-266.	0.3	1
174	Carbon Composite with Pt Nanoparticles Prepared by Room-Temperature Ionic Liquid-Sputtering Method. ECS Transactions, 2010, 33, 127-133.	0.3	6
175	Irradiation-Induced Metal Nanoparticles in Room-Temperature Ionic Liquid. ECS Transactions, 2010, 33, 543-554.	0.3	4
176	Immobilization of Pd on Nanosilica Dendrimer as SILC: Highly Active and Sustainable Cluster Catalyst for Suzuki-Miyaura Reaction. Synlett, 2010, 2010, 1990-1996.	1.0	36
177	Preparation of Luminescent AgInS ₂ â^'AgGaS ₂ Solid Solution Nanoparticles and Their Optical Properties. Journal of Physical Chemistry Letters, 2010, 1, 3283-3287.	2.1	75
178	Nanosize-Controlled Syntheses of Indium Metal Particles and Hollow Indium Oxide Particles via the Sputter Deposition Technique in Ionic Liquids. Chemistry of Materials, 2010, 22, 5209-5215.	3.2	59
179	Room-Temperature Ionic Liquid. A New Medium for Material Production and Analyses under Vacuum Conditions. Journal of Physical Chemistry Letters, 2010, 1, 3177-3188.	2.1	144
180	Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films. Journal of Materials Chemistry, 2010, 20, 5319.	6.7	138

#	Article	IF	Citations
181	Remarkable photoluminescence enhancement of ZnS–AgInS2 solid solution nanoparticles by post-synthesis treatment. Chemical Communications, 2010, 46, 2082.	2.2	149
182	Electrochemistry of Copper(I) Oxide in the 66.7–33.3 mol % Urea–Choline Chloride Room-Temperature Eutectic Melt. Journal of the Electrochemical Society, 2010, 157, F96.	1.3	54
183	Size control and immobilization of gold nanoparticles stabilized in an ionic liquid on glass substrates for plasmonic applications. Physical Chemistry Chemical Physics, 2010, 12, 1804-1811.	1.3	60
184	Various in situ SEM Techniques for Observing Electrode Surface Reactions in Ionic Liquid. Hyomen Kagaku, 2009, 30, 368-373.	0.0	3
185	Improvement of Anode Oxidation Reaction of a Fuel Cell using Ammonium Formate with Pt-Pd Catalysts. ECS Transactions, 2009, 16, 849-853.	0.3	6
186	Electroanalytical Chemistry in Polymer-RTIL Composite with an In Situ Electrochemical SEM System. ECS Transactions, 2009, 25, 73-84.	0.3	0
187	Small-Angle X-ray Scattering Study of Au Nanoparticles Dispersed in the Ionic Liquids 1-Alkyl-3-methylimidazolium Tetrafluoroborate. Journal of Physical Chemistry C, 2009, 113, 3917-3922.	1.5	87
188	Gold nanoparticles prepared with a room-temperature ionic liquid–radiation irradiation method. Chemical Communications, 2009, , 6792.	2.2	63
189	Systematic Studies on Emission Quenching of Cadmium Telluride Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 21621-21628.	1.5	24
190	Emission quench of water-soluble ZnS–AgInS2 solid solution nanocrystals and its application to chemosensors. Chemical Communications, 2009, , 7485.	2.2	42
191	Organic conducting wire formation on a TiO2 nanocrystalline structure: towards long-lived charge separated systems. Chemical Communications, 2009, , 4360.	2.2	12
192	Nanoparticle-Stabilized Cholesteric Blue Phases. Applied Physics Express, 2009, 2, 121501.	1.1	230
193	Formation of Au nanoparticles in an ionic liquid by electron beam irradiation. Chemical Communications, 2009, , 1775.	2.2	79
194	Charge Recombination Kinetics at an in Situ Chemical Bath-Deposited CdS/Nanocrystalline TiO ₂ Interface. Journal of Physical Chemistry C, 2009, 113, 6852-6858.	1.5	59
195	A Facile Synthesis of AuAg Alloy Nanoparticles Using a Chemical Reaction Induced by Sputter Deposition of Metal onto Ionic Liquids. Electrochemistry, 2009, 77, 636-638.	0.6	52
196	Functionalized Room-Temperature Ionic Liquids for Lithium Secondary Battery Electrolyte Materials. Electrochemistry, 2009, 77, 690-692.	0.6	10
197	Electrocatalytic Activity of Platinum Nanoparticles Synthesized by Room-Temperature Ionic Liquid-Sputtering Method. Electrochemistry, 2009, 77, 693-695.	0.6	51
198	Thermally Induced Self-assembly of Gold Nanoparticles Sputter-deposited in Ionic Liquids on Highly Ordered Pyrolytic Graphite Surfaces. Chemistry Letters, 2009, 38, 330-331.	0.7	46

#	Article	IF	CITATIONS
199	Electrochemical desorption of a self-assembled monolayer of alkanethiol in ionic liquids. Journal of Electroanalytical Chemistry, 2008, 615, 110-116.	1.9	19
200	Development of In Situ Electrochemical Scanning Electron Microscopy with Ionic Liquids as Electrolytes. ChemPhysChem, 2008, 9, 763-767.	1.0	69
201	Polyacrylic acid coating of highly luminescent CdS nanocrystals for biological labeling applications. Journal of Colloid and Interface Science, 2008, 324, 257-260.	5.0	23
202	Development of in situ scanning electron microscope system for real time observation of metal deposition from ionic liquid. Electrochemistry Communications, 2008, 10, 1901-1904.	2.3	67
203	Development of new techniques for scanning electron microscope observation using ionic liquid. Electrochimica Acta, 2008, 53, 6228-6234.	2.6	121
204	Photoinduced Formation of Polythiophene/TiO2Nanohybrid Heterojunction Films for Solar Cell Applications. Journal of Physical Chemistry C, 2008, 112, 4767-4775.	1.5	38
205	Single-step synthesis of gold–silver alloy nanoparticles in ionic liquids by a sputter deposition technique. Chemical Communications, 2008, , 691-693.	2.2	198
206	Self-Assembly of Ionic Liquid (BMI-PF ₆)-Stabilized Gold Nanoparticles on a Silicon Surface: Chemical and Structural Aspects. Langmuir, 2008, 24, 7785-7792.	1.6	74
207	Quantum dot sensitized solar cells. , 2008, , .		1
208	Electrodeposition of Al–Mo–Ti Ternary Alloys in the Lewis Acidic Aluminum Chloride–1-Ethyl-3-methylimidazolium Chloride Room-Temperature Ionic Liquid. Journal of the Electrochemical Society, 2008, 155, D256.	1.3	50
209	Performance improvement of CdS quantum dots sensitized TiO ₂ solar cells by introducing a dense TiO ₂ blocking layer. Journal Physics D: Applied Physics, 2008, 41, 102002.	1.3	93
210	In Situ Surface Plasmon Resonance Measurements of Self-assembled Monolayers of Ferrocenylalkylthiols under Constant Potentials. Analytical Sciences, 2008, 24, 307-312.	0.8	5
211	Fabrication of Amperometric Biosensing Systems Focusing on Attachment of High Substrate Selectivity. Chemistry Letters, 2008, 37, 230-235.	0.7	5
212	Photoluminescence Enhancement of ZnS–AgInS2 Solid Solution Nanoparticles Layer-by-layer-assembled in Inorganic Multilayer Thin Films. Chemistry Letters, 2008, 37, 700-701.	0.7	18
213	Preparation of Alloy Nanoparticles by a Simultaneous Sputter Deposition of Au and Ag onto Ionic Liquids. ECS Meeting Abstracts, 2008, , .	0.0	0
214	ã,ã,ªãf³æ¶²ä½"ã,'甓ã,ãŸin situé›»åé¡•å¾®é∮観察法ã®é⊸‹ç™º. Hyomen Gijutsu/Journal of the Surface Finishin	ngo S ociety	/ of Japan, 20
215	Interfacial electron transfer mechanisms in bithiophene sensitized TiO2 based solar cells. Transactions of the Materials Research Society of Japan, 2008, 33, 161-164.	0.2	3
216	Electrocatalytic Activity of Pt and Ru Photodeposited Polyaniline Electrodes for Methanol Oxidation. Electrochemistry, 2007, 75, 39-44.	0.6	4

#	Article	IF	Citations
217	Carbon Nanotube and Carbon Black Supported Platinum Nanocomposites as Oxygen Reduction Electrocatalysts for Polymer Electrolyte Fuel Cells. Electrochemistry, 2007, 75, 705-708.	0.6	10
218	One-step Preparation and Photosensitivity of Size-quantized Cadmium Chalcogenide Nanoparticles Deposited on Porous Zinc Oxide Film Electrodes. Chemistry Letters, 2007, 36, 712-713.	0.7	15
219	CdS Quantum Dots Sensitized TiO2Sandwich Type Photoelectrochemical Solar Cells. Chemistry Letters, 2007, 36, 88-89.	0.7	147
220	Utilization of AC Impedance Measurements for Electrochemical Glucose Sensing Using Glucose Oxidase to Improve Detection Selectivity. Bulletin of the Chemical Society of Japan, 2007, 80, 158-165.	2.0	19
221	Facile Synthesis of ZnSâ^'AgInS ₂ Solid Solution Nanoparticles for a Color-Adjustable Luminophore. Journal of the American Chemical Society, 2007, 129, 12388-12389.	6.6	338
222	Controlling surface reactions of CdS nanocrystals: photoluminescence activation, photoetching and photostability under light irradiation. Nanotechnology, 2007, 18, 465702.	1.3	54
223	Optical simulation of transmittance into a nanocrystalline anatase TiO2 film for solar cell applications. Solar Energy Materials and Solar Cells, 2007, 91, 201-206.	3.0	40
224	Preparation of selective micro glucose sensor without permselective membrane by electrochemical deposition of ruthenium and glucose oxidase. Electrochemistry Communications, 2007, 9, 1012-1016.	2.3	40
225	Observation of Ionic Liquid by Electron Microscopy. Hyomen Kagaku, 2007, 28, 322-326.	0.0	8
226	Single-Wall Carbon Nanotubes Supported Platinum Nanoparticles with Improved Electrocatalytic Activity for Oxygen Reduction Reaction. Langmuir, 2006, 22, 2392-2396.	1.6	298
227	Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Applied Physics Letters, 2006, 89, 243117.	1.5	352
228	Highly Dispersed Pt Catalysts on Single-Walled Carbon Nanotubes and Their Role in Methanol Oxidation. Journal of Physical Chemistry B, 2006, 110, 16185-16188.	1.2	165
229	Observation of Ionic Liquid by Scanning Electron Microscope. Chemistry Letters, 2006, 35, 600-601.	0.7	170
230	Addition of Capacitor Property into Polymer Electrolyte Fuel Cell by Using Composite of Conducting Polymer and Pt-deposited Carbon. Electrochemistry, 2006, 74, 394-396.	0.6	0
231	Glucose Sensing Using p-Acetamidophenol as an Electron Mediator between Glucose Oxidase and Nafion-Coated Glassy Carbon Electrode. Electrochemistry, 2006, 74, 804-809.	0.6	5
232	Photoelectrochemistry of p-type Cu2O semiconductor electrode in ionic liquid. Research on Chemical Intermediates, 2006, 32, 575-583.	1.3	14
233	Ligand-Free Platinum Nanoparticles Encapsulated in a Hollow Porous Carbon Shell as a Highly Active Heterogeneous Hydrogenation Catalyst. Angewandte Chemie - International Edition, 2006, 45, 7063-7066.	7.2	319
234	Surface Modification of Photoluminescent CdS Nanocrystals Inducing Spontaneous Phase Transfer Reaction. Chemistry Letters, 2005, 34, 1300-1301.	0.7	2

#	Article	IF	CITATIONS
235	Electrocatalytic reduction of oxygen at platinum particles photodeposited on polyaniline/Nafion film. Polymers for Advanced Technologies, 2005, 16, 759-763.	1.6	9
236	Enhancement of Light-Energy Conversion Efficiency by Multi-Porphyrin Arrays of Porphyrinâ^'Peptide Oligomers with Fullerene Clusters. Journal of Physical Chemistry B, 2005, 109, 19-23.	1.2	175
237	Oxygen Reduction at Platinum Monolayer Islands Deposited on Au(111). Journal of Physical Chemistry B, 2005, 109, 23190-23195.	1.2	23
238	Investigation of the Effect of Pt Location in Catalyst Layer on Fuel Cell Performance Using Pt-photodeposited Polyaniline-Nafion Composite Film. Electrochemistry, 2005, 73, 1021-1025.	0.6	3
239	Photodeposition of Pt on composite films of Nafion and conducting polymer and O2 reduction using the composite film-coated electrode. Electrochimica Acta, 2004, 50, 749-754.	2.6	17
240	Effects of I‰-Functional Groups on pH-Dependent Reductive Desorption of Alkanethiol Self-Assembled Monolayers. Langmuir, 2004, 20, 10123-10128.	1.6	47
241	Real-Time Quantification of Methanol in Plants Using a Hybrid Alcohol Oxidaseâ^'Peroxidase Biosensor. Analytical Chemistry, 2004, 76, 1500-1506.	3.2	37
242	Preparation Method Allowing Self-isolation of CdS Nanocrystals Emitting Intense Band-gap Luminescence. Chemistry Letters, 2004, 33, 1344-1345.	0.7	14
243	Simulations of Electrochemical AC Impedances by Numerical Calculations. Review of Polarography, 2004, 50, 305-313.	0.0	3
244	Preparation of Pt Monolayer Islands Using Self-assembled Monolayer Technique. Electrochemistry, 2004, 72, 412-414.	0.6	3
245	Oxygen reduction at silver monolayer islands deposited on gold substrate. Electrochemistry Communications, 2003, 5, 133-137.	2.3	35
246	Novel Utilization of Impedance Measurement for Electrochemical Biosensing Aiming at Elimination of Influence by Interference Materials. Chemistry Letters, 2003, 32, 52-53.	0.7	11
247	Development of Electrochemical Methods to Elucidate Dynamic Parameters of Lipid Molecules in Bilayer Membrane. Electrochemistry, 2003, 71, 933-937.	0.6	5
248	Rechargeable Lithium Battery Cells Fabricated Using Poly(methyl methacrylate) Gel Electrolyte and Composite of V[sub 2]O[sub 5] and Polypyrrole. Journal of the Electrochemical Society, 2002, 149, A988.	1.3	49
249	Photoelectrochemical activities of ultrathin lead sulfide films prepared by electrochemical atomic layer epitaxy. Journal of Electroanalytical Chemistry, 2002, 522, 33-39.	1.9	37
250	Voltammetric Characterization for the Growth of Oxide Films Formed on Copper in Air. Zairyo To Kankyo/ Corrosion Engineering, 2002, 51, 566-570.	0.0	7
251	Detection of difference in acidity between arrayed carboxy groups and the groups dissolved in solution by reductive desorption of a self-assembled monolayer of carboxy-terminated thiols. Chemical Communications, 2001, , 1338-1339.	2.2	14
252	Voltammetric Characterization of Oxide Films Formed on Copper in Air. Journal of the Electrochemical Society, 2001, 148, B467.	1.3	64

#	Article	IF	CITATIONS
253	Spatial distribution of domains in binary self-assembled monolayers of thiols having different lengths. Journal of Electroanalytical Chemistry, 2001, 496, 29-36.	1.9	47
254	Nanopore preparation in self-assembled monolayers of alkanethiols with use of the selective desorption technique assisted by underpotential deposition of silver and copper. Journal of Electroanalytical Chemistry, 2001, 497, 97-105.	1.9	41
255	Characterization of Ultrasmall CdS Nanoparticles Prepared by the Size-Selective Photoetching Technique. Journal of Physical Chemistry B, 2001, 105, 6838-6845.	1.2	110
256	Photoelectrochemical properties of size-quantized semiconductor photoelectrodes prepared by two-dimensional cross-linking of monodisperse CdS nanoparticles. Electrochimica Acta, 2000, 45, 3269-3276.	2.6	24
257	Charge–discharge properties of chemically prepared composites of V2O5 and polypyrrole as positive electrode materials in rechargeable Li batteries. Electrochimica Acta, 2000, 46, 91-97.	2.6	64
258	Electrochemical preparation of ZnS/CdS superlattice and its photoelectrochemical properties. Electrochemistry Communications, 2000, 2, 359-362.	2.3	25
259	Charge-discharge properties of composites of polypyrrole and vanadium oxide powder. Macromolecular Symposia, 2000, 156, 213-222.	0.4	5
260	Preparation of Size-Quantized ZnS Thin Films Using Electrochemical Atomic Layer Epitaxy and Their Photoelectrochemical Properties. Langmuir, 2000, 16, 5820-5824.	1.6	37
261	Underpotential deposition behavior of metals onto gold electrodes coated with self-assembled monolayers of alkanethiols. Journal of Electroanalytical Chemistry, 1999, 473, 59-67.	1.9	80
262	Charge–discharge properties of composites of LiMn2O4 and polypyrrole as positive electrode materials for 4 V class of rechargeable Li batteries. Electrochimica Acta, 1999, 44, 4593-4600.	2.6	126
263	Amperometric Determination of Total Cholesterol at Gold Electrodes Covalently Modified with Cholesterol Oxidase and Cholesterol Esterase with Use of Thionin as an Electron Mediator. Analytical Chemistry, 1999, 71, 1068-1076.	3.2	72
264	Uricase-Catalyzed Oxidation of Uric Acid Using an Artificial Electron Acceptor and Fabrication of Amperometric Uric Acid Sensors with Use of a Redox Ladder Polymer. Analytical Chemistry, 1999, 71, 1928-1934.	3.2	62
265	A Biomimetic Phospholipid/Alkanethiolate Bilayer Immobilizing Uricase and an Electron Mediator on an Au Electrode for Amperometric Determination of Uric Acid. Analytical Chemistry, 1999, 71, 4278-4283.	3.2	70
266	Electrochemical Formation of a Polyaniline-Analogue Monolayer on a Gold Electrode. Langmuir, 1999, 15, 6807-6812.	1.6	34
267	Fabrication of CdS Nanoparticle Chains along DNA Double Strands. Journal of Physical Chemistry B, 1999, 103, 8799-8803.	1.2	134
268	Partial Desorption of Alkanethiol Monolayer from Gold Substrate Modified with Ag and Cu. Electrochemistry, 1999, 67, 1254-1257.	0.6	17
269	ã•ã•ã•ã,ã∮ã®é›»æ°—åŒ−å¦è∵̂測―基çቜã•ãfŽã,¦ãfã,¦ã€€ãfã,ªãf¼ãf«ã®è‡ªå·±é›†å•åå°å^†å膜(2)―å•å^†å膜	:ã, '6 ៶&æ°–	-åŒ-å-¦çš".
270	Underpotential Deposition of Silver onto Gold Substrates Covered with Self-Assembled Monolayers of Alkanethiols To Induce Intervention of the Silver between the Monolayer and the Gold Substrate. Langmuir, 1998, 14, 3298-3302.	1.6	94

#	Article	IF	CITATIONS
271	Preparation and properties of amperometric uric acid sensors. Sensors and Actuators B: Chemical, 1998, 52, 72-77.	4.0	38
272	Urea Photosynthesis from Inorganic Carbon and Nitrogen Compounds Using TiO2as Photocatalyst. Langmuir, 1998, 14, 1899-1904.	1.6	19
273	Electroorganic Synthesis of Optically Active Alcohols from Ketone and Aldehyde Derivatives Using Alcohol Dehydrogenase as an Electrocatalyst. , 1998, , 205-208.		0
274	Chargeâ€Discharge Properties of Composite Films of Polyaniline and Crystalline  V 2 O 5 Particle of the Electrochemical Society, 1998, 145, 2707-2710.	es. Journal 1.3	51
275	Chargeâ€Discharge Properties of Composite of Synthetic Graphite and Poly(3â€nâ€hexylthiophene) as an Anode Active Material in Rechargeable Lithiumâ€lon Batteries. Journal of the Electrochemical Society, 1998, 145, 1415-1420.	1.3	29
276	Electrochemical Oxidation of Cholesterol Catalyzed by Cholesterol Oxidase with Use of an Artificial Electron Mediator. Analytical Chemistry, 1997, 69, 2367-2372.	3.2	75
277	Template Synthesis of Polypyrroleâ€Coated Spinel LiMn2 O 4 Nanotubules and Their Properties as Catho Active Materials for Lithium Batteries. Journal of the Electrochemical Society, 1997, 144, 1923-1927.	de 1.3	201
278	Asymmetric Electroreduction of Ketone and Aldehyde Derivatives to the Corresponding Alcohols Using Alcohol Dehydrogenase as an Electrocatalyst. Journal of Organic Chemistry, 1997, 62, 2494-2499.	1.7	55
279	Voltammetric Response Accompanied by Inclusion of Ion Pairs and Triple Ion Formation of Electrodes Coated with an Electroactive Monolayer Film. Analytical Chemistry, 1997, 69, 1045-1053.	3.2	53
280	Characterization of Covalently Immobilized Q-CdS Particles on Au(111) by Scanning Tunneling Microscopy and Tunneling Spectroscopy with High Reproducibility. Langmuir, 1997, 13, 742-746.	1.6	50
281	Evaluation of Diffusibility of Adsorbed Propionaldehyde on Titanium Dioxide-Loaded Adsorbent Photocatalyst Films from Its Photodecomposition Rate. Journal of Physical Chemistry B, 1997, 101, 2644-2649.	1.2	92
282	EQCM studies on polypyrrole in aqueous solutions. Journal of Electroanalytical Chemistry, 1997, 420, 219-225.	1.9	66
283	Electrochemical oxidation of reduced nicotinamide coenzymes at Au electrodes modified with phenothiazine derivative monolayers. Journal of Electroanalytical Chemistry, 1997, 422, 45-54.	1.9	80
284	Preparation of a microelectrode array using desorption of a self-assembled monolayer of hexadecylthiolate on a gold electrode in cyanide solution. Journal of Electroanalytical Chemistry, 1997, 429, 75-80.	1.9	7
285	Effects of Adsorbents Used as Supports for Titanium Dioxide Loading on Photocatalytic Degradation of Propyzamide. Environmental Science & Environmenta	4.6	275
286	Photoimage Formation in a TiO2 Particleâ€Incorporated Prussian Blue Film. Journal of the Electrochemical Society, 1996, 143, 3462-3465.	1.3	37
287	Fabrication of Novel Electrochemical Reduction Systems Using Alcohol Dehydrogenase as a Bifunctional Electrocatalyst. Chemistry Letters, 1996, 25, 137-138.	0.7	8
288	Preparation of a microelectrode array by photo-induced elimination of a self-assembled monolayer of hexadecylthiolate on a gold electrode. Journal of Electroanalytical Chemistry, 1995, 396, 97-102.	1.9	19

#	Article	IF	Citations
289	Preparation and Properties of Manganese Dioxide/Polypyrrole Composites as an Active Material for Lithium Secondary Batteries. Materials Research Society Symposia Proceedings, 1995, 393, 125.	0.1	2
290	Preparation and Properties of Size-Quantized TiO2 Particles Immobilized in Poly(vinylpyrrolidinone) Gel Films. Langmuir, 1995, 11, 3725-3729.	1.6	39
291	Preparation and Amperometric Glucose Sensitivity of Covalently Bound Glucose Oxidase to (2-Aminoethyl)ferrocene on an Au Electrode. Analytical Chemistry, 1995, 67, 1684-1690.	3.2	57
292	Chemical Preparation of Manganese Dioxide/Polypyrrole Composites and Their Use as Cathode Active Materials for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 1995, 142, 4190-4195.	1.3	109
293	Effect of Inert Supports for Titanium Dioxide Loading on Enhancement of Photodecomposition Rate of Gaseous Propionaldehyde. The Journal of Physical Chemistry, 1995, 99, 9986-9991.	2.9	281
294	Selective photoreduction of carbon dioxide to methanol on titanium dioxide photocatalysts in propylene carbonate solution. Journal of the Chemical Society Chemical Communications, 1995, , 829.	2.0	17
295	Electrochemical Synthesis of Composite Films of Manganese Dioxide and Polypyrrole and Their Properties as an Active Material in Lithium Secondary Batteries. Journal of the Electrochemical Society, 1994, 141, 10-15.	1.3	122
296	Investigation of the gas-transport properties of polyaniline. Journal of Membrane Science, 1994, 91, 1-12.	4.1	81
297	Kinetic studies using the quartz microbalance technique on the photoreduction of polyaniline film containing TiO2 particles. Journal of Electroanalytical Chemistry, 1994, 377, 261-268.	1.9	15
298	Electrochemical conversion of carbon dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts. Journal of the American Chemical Society, 1994, 116, 5437-5443.	6.6	133
299	Mechanism of the Amperometric Response of a Proposed Glucose Sensor Based on a Polypyrrole-Tubule-Impregnated Membrane. Analytical Chemistry, 1994, 66, 2757-2762.	3.2	36
300	Photochemical Reduction of Carbon Dioxide to Methanol Using ZnS Microcrystallite as a Photocatalyst in the Presence of Methanol Dehydrogenase. Journal of the Electrochemical Society, 1994, 141, 1498-1503.	1.3	95
301	Electrochemical Reduction of Formaldehyde, Acetaldehyde, and Acetone to The Corresponding Alcohols Using Alcohol Dehydrogenase as an Electrocatalyst. Chemistry Letters, 1994, 23, 407-410.	0.7	5
302	Anodic deprotonation of polyaniline films in alcohol solutions. Chemistry of Materials, 1993, 5, 604-608.	3.2	6
303	Light image formations on deprotonated polyaniline films containing titania particles. Chemistry of Materials, 1993, 5, 437-441.	3.2	54
304	A Simple Chemical Procedure for Extending the Conductive State of Polypyrrole to More Negative Potentials. Journal of the Electrochemical Society, 1993, 140, 2754-2759.	1.3	15
305	Electrochemical Conversion of Carbon Dioxide to Methanol with Use of Enzymes as Biocatalysts. Chemistry Letters, 1993, 22, 1631-1634.	0.7	26
306	Chargeâ€discharge Characteristics of Polypyrrole Films Containing Incorporated Anthraquinoneâ€1â€Sulfonate. Journal of the Electrochemical Society, 1992, 139, 28-32.	1.3	136

#	Article	IF	Citations
307	Photoelectrochromic Properties of Methylene Blue in Conducting Polyaniline Matrixes. Journal of the Electrochemical Society, 1992, 139, 1824-1830.	1.3	12
308	Preparation and Electrochemical Properties of  WO 3 â€â€‰Incorporated Polyaniline Films. Journal Electrochemical Society, 1992, 139, 3141-3146.	of the	36
309	Formation of a light image in a polyaniline film containing titanium(IV) oxide particles. Journal of the Chemical Society Chemical Communications, 1992, , 716.	2.0	34
310	Influence of basicity of dopant anions on the conductivity of polyaniline. Journal of Electroanalytical Chemistry, 1992, 335, 223-231.	1.9	33
311	Light-writing in Polyaniline Film Containing WO ₃ Particles. Electrochemistry, 1992, 60, 1097-1100.	0.3	6
312	Charge–discharge properties of polypyrrole films containing manganese dioxide particles. Journal of the Chemical Society Chemical Communications, 1991, , 986-987.	2.0	40
313	Kinetics of glassy carbon electrodes coated with polystyrene films containing ferrocene and ionic surface-active agents. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 301, 165-176.	0.3	0
314	Electrochemical Fixation of CO2in Acetyl-coenzyme A to Yield Pyruvic Acid Using Pyruvate Dehydrogenase Complexes as an Electrocatalyst. Chemistry Letters, 1990, 19, 1151-1154.	0.7	9
315	Electrochemical fixation of carbon dioxide in pyruvic acid to yield malic acid using malic enzyme as an electrocatalyst. Bioelectrochemistry, 1990, 24, 241-247.	1.0	15
316	Preparation of polyaniline films doped with methylene blue-bound Nafion and the electrochromic properties of the resulting films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 281, 97-107.	0.3	28
317	Electrochemical fixation of carbon dioxide in pyruvic acid to yield malic acid using malic enzyme as an electrocatalyst. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 299, 241-247.	0.3	4
318	Electrical Conductivity of Polypyrrole Films Doped with Carboxylate Anions. Journal of the Electrochemical Society, 1990, 137, 1788-1792.	1.3	22
319	Dependence of Conductivity of Polypyrrole Film Doped with pâ€Phenol Sulfonate on Solution pH. Journal of the Electrochemical Society, 1990, 137, 2147-2150.	1.3	37
320	Electrochemical Synthesis of Polypyrrole Films Containing TiO2 Powder Particles. Journal of the Electrochemical Society, 1990, 137, 1793-1796.	1.3	53
321	Dimerization kinetics of methylene blue incorporated in a Nation film. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 261, 363-373.	0.3	29
322	Gas sensitivities of electropolymerized polythiophene films. Synthetic Metals, 1989, 30, 173-181.	2.1	83
323	Electrochemical behaviour of polyaniline in weak acid solutions. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 969.	1.0	45
324	Electrochemical fixation of carbon dioxide in oxoglutaric acid using an enzyme as an electrocatalyst. Journal of the American Chemical Society, 1989, 111, 2361-2362.	6.6	58

#	Article	IF	CITATIONS
325	Reduction of N3â^'by [Mo2Fe6S8(SPh)9]3â^'Modified Glassy Carbon Electrodeâ€"Model Study of Nitrogenase. Bulletin of the Chemical Society of Japan, 1989, 62, 1561-1566.	2.0	6
326	Electrodes coated with polystyrene films containing surface-active agents. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 242, 143-154.	0.3	9
327	Effects of electrolytes on the photoelectrochemical reduction of carbon dioxide at illuminated p-type cadmium telluride and p-type indium phosphide electrodes in aqueous solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 249, 143-153.	0.3	69
328	Gas sensitivity of polypyrrole films to NO2. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 1587.	1.0	66
329	The effect of basicity of dopant anions on the conductivity of polypyrrole films. Journal of the Chemical Society Chemical Communications, 1988, , 779.	2.0	31
330	Conductivity of polypyrrole films doped with aromatic sulphonate derivatives. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 2317.	1.0	34
331	Electrochemical Behaviors of Polypyrrole, Polyâ€3â€methylthiophene, and Polyaniline Deposited on Nafionâ€Coated Electrodes. Journal of the Electrochemical Society, 1988, 135, 1132-1137.	1.3	66
332	Copolymerization of Pyrrole and Thiophene by Electrochemical Oxidation and Electrochemical Behavior of the Resulting Copolymers. Journal of the Electrochemical Society, 1988, 135, 1691-1695.	1.3	126
333	Lightâ€Localized Deposition of Electroconductive Polymers on nâ€Type Silicon by Utilizing Semiconductor Photocatalysis. Journal of the Electrochemical Society, 1988, 135, 1699-1702.	1.3	25
334	Effect of organic dopants on electrical conductivity of polypyrrole films. Synthetic Metals, 1987, 18, 101-104.	2.1	30
335	Reduction of NO3 ? giving NH3 using a (Bu n 4N)3[Mo2Fe6S8(SPh)9]-modified glassy carbon electrode. Journal of the Chemical Society Chemical Communications, 1986, , 135.	2.0	15
336	Multielectron reductions of alkyl azides with [Mo2Fe6S8(SPh)9]3- and [Mo2Fe6S8(.muSEt)3(SCH2CH2OH)6]3- in homogeneous systems and with a (Bu4N)3[Mo2Fe6S8(SPh)9] modified glassy-carbon electrode in water. Inorganic Chemistry, 1986, 25, 1691-1697.	1.9	20
337	Assimilatory and dissimilatory reduction of nitrate and nitrite with a tris(tetrabutylammonium) nonakis(benzenethiolato)octasulfidohexaferratedimolybdate(3-) modified glassy-carbon electrode in water. Inorganic Chemistry, 1986, 25, 3018-3022.	1.9	51
338	Electrochemical Behavior of Polypyrrole Deposited on Nafion-coated Electrodes. Chemistry Letters, 1986, 15, 1243-1246.	0.7	18
339	The Redox Potential of a Synthetic Fe4S4Cluster. Protonation/Deprotonation Equilibria of the Oxidized and Reduced Species. Chemistry Letters, 1986, 15, 1531-1534.	0.7	1
340	MULTIELECTRON REDUCTION OF ALKYLAZIDE BY A (n-Bu4N)3[Mo2Fe6S8(SPh)9]-MODIFIED GLASSY CARBON ELECTRODE. Chemistry Letters, 1985, 14, 401-404.	0.7	6
341	Redox Behavior and Electrochromic Properties of Polypyrrole Films in Aqueous Solutions. Bulletin of the Chemical Society of Japan, 1984, 57, 2247-2253.	2.0	87
342	Preparation and Characteristic Control of Conducting Polymer/Metal Oxide Nano-Hybrid Films for Solar Energy Conversion. Ceramic Engineering and Science Proceedings, 0, , 35-49.	0.1	0

ARTICLE IF CITATIONS

343 Use of Ionic Liquid Under Vacuum Conditions., 0,,... 5