
Tsutomu Arie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4599947/publications.pdf Version: 2024-02-01

Τουτομίι Δριέ

#	Article	IF	CITATIONS
1	Molecular Organization of Mating Type Loci in Heterothallic, Homothallic, and Asexual Gibberella/Fusarium Species. Fungal Genetics and Biology, 2000, 31, 7-20.	2.1	231
2	Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics, 2010, 11, 210.	2.8	179
3	Tailorâ€made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnology and Bioengineering, 2015, 112, 2543-2549.	3.3	166
4	Mating-Type Genes from Asexual Phytopathogenic Ascomycetes Fusarium oxysporum and Alternaria alternata. Molecular Plant-Microbe Interactions, 2000, 13, 1330-1339.	2.6	150
5	A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species. Scientific Reports, 2017, 7, 9042.	3.3	115
6	A novel mycovirus associated with four double-stranded RNAs affects host fungal growth in Alternaria alternata. Virus Research, 2009, 140, 179-187.	2.2	108
7	Mycoviruses related to chrysovirus affect vegetative growth in the rice blast fungus Magnaporthe oryzae. Journal of General Virology, 2010, 91, 3085-3094.	2.9	107
8	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	2.2	107
9	A simple method for a mini-preparation of fungal DNA. Journal of General Plant Pathology, 2006, 72, 348-350.	1.0	103
10	PCR-based differentiation of Fusarium oxysporum ff. sp. lycopersici and radicis-lycopersici and races of F. oxysporum f. sp. lycopersici. Journal of General Plant Pathology, 2006, 72, 273-283.	1.0	101
11	Resistant and Susceptible Responses in Tomato to Cyst Nematode are Differentially Regulated by Salicylic Acid. Plant and Cell Physiology, 2010, 51, 1524-1536.	3.1	99
12	Rice false smut pathogen, Ustilaginoidea virens, invades through small gap at the apex of a rice spikelet before heading. Journal of General Plant Pathology, 2012, 78, 255-259.	1.0	93
13	Molecular characterization of a novel mycovirus in Alternaria alternata manifesting two-sided effects: Down-regulation of host growth and up-regulation of host plant pathogenicity. Virology, 2018, 519, 23-32.	2.4	93
14	<i>Fusarium</i> diseases of cultivated plants, control, diagnosis, and molecular and genetic studies. Journal of Pesticide Sciences, 2019, 44, 275-281.	1.4	75
15	Three evolutionary lineages of tomato wilt pathogen, Fusarium oxysporum f. sp. lycopersici, based on sequences of IGS, MAT1, and pg1, are each composed of isolates of a single mating type and a single or closely related vegetative compatibility group. Journal of General Plant Pathology, 2005, 71, 263-272.	1.0	72
16	A dsRNA mycovirus, Magnaporthe oryzae chrysovirus 1-B, suppresses vegetative growth and development of the rice blast fungus. Virology, 2014, 448, 265-273.	2.4	65
17	Foliar Spray of Validamycin A or Validoxylamine A Controls Tomato Fusarium Wilt. Phytopathology, 2005, 95, 1209-1216.	2.2	64
18	Characterization of <i>Magnaporthe oryzae</i> Chrysovirus 1 Structural Proteins and Their Expression in <i>Saccharomyces cerevisiae</i> . Journal of Virology, 2012, 86, 8287-8295.	3.4	63

#	Article	IF	CITATIONS
19	Tomato as a model plant for plant-pathogen interactions. Plant Biotechnology, 2007, 24, 135-147.	1.0	62
20	Beta-Cyanoalanine Synthase as a Molecular Marker for Induced Resistance by Fungal Glycoprotein Elicitor and Commercial Plant Activators. Phytopathology, 2006, 96, 908-916.	2.2	47
21	A Genetic Mechanism for Emergence of Races in Fusarium oxysporum f. sp. lycopersici: Inactivation of Avirulence Gene AVR1 by Transposon Insertion. PLoS ONE, 2012, 7, e44101.	2.5	47
22	Catalog of Micro-Tom tomato responses to common fungal, bacterial, and viral pathogens. Journal of General Plant Pathology, 2005, 71, 8-22.	1.0	46
23	Inhibition of histone deacetylase causes reduction of appressorium formation in the rice blast fungus Magnaporthe oryzae. Journal of General and Applied Microbiology, 2009, 55, 489-498.	0.7	45
24	The Tomato Wilt Fungus <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> shares Common Ancestors with Nonpathogenic <i>F. oxysporum</i> isolated from Wild Tomatoes in the Peruvian Andes. Microbes and Environments, 2014, 29, 200-210.	1.6	41
25	Rapid detection of Magnaporthe oryzae chrysovirus 1-A from fungal colonies on agar plates and lesions of rice blast. Journal of General Plant Pathology, 2015, 81, 97-102.	1.0	38
26	Real-time PCR for differential determination of the tomato wilt fungus, Fusarium oxysporum f. sp. lycopersici, and its races. Journal of General Plant Pathology, 2010, 76, 116-121.	1.0	37
27	Tailorâ€made TALEN system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnology and Bioengineering, 2015, 112, 1335-1342.	3.3	36
28	Novel loop-mediated isothermal amplification (LAMP) assay with a universal QProbe can detect SNPs determining races in plant pathogenic fungi. Scientific Reports, 2017, 7, 4253.	3.3	36
29	Cloning of the pathogenicity-related gene FPD1 in Fusarium oxysporum f. sp. lycopersici. Journal of General Plant Pathology, 2004, 70, 16-20.	1.0	35
30	Mode of action of Trichoderma asperellum SKT-1, a biocontrol agent against Gibberella fujikuroi. Journal of Pesticide Sciences, 2007, 32, 222-228.	1.4	34
31	Population dynamics and pathogenic races of rice blast fungus, Magnaporthe oryzae in the Mekong Delta in Vietnam. Journal of General Plant Pathology, 2010, 76, 177-182.	1.0	33
32	Use of fluorescent proteins to visualize interactions between the Bakanae disease pathogen Gibberella fujikuroi and the biocontrol agent Talaromyces sp. KNB-422. Journal of General Plant Pathology, 2012, 78, 54-61.	1.0	31
33	Nâ€ŧerminal region of cysteineâ€rich protein (CRP) in carlaviruses is involved in the determination of symptom types. Molecular Plant Pathology, 2018, 19, 180-190.	4.2	29
34	A Novel Transformation System for <i>Pyricularia oryzae</i> : Adhesion of Regenerating Fungal Protoplasts to Collagen-coated Dishes. Bioscience, Biotechnology and Biochemistry, 1995, 59, 1177-1180.	1.3	28
35	Single crossover-mediated targeted nucleotide substitution and knock-in strategies with CRISPR/Cas9 system in the rice blast fungus. Scientific Reports, 2019, 9, 7427.	3.3	28
36	An avirulence gene homologue in the tomato wilt fungus FusariumÂoxysporum f. sp. lycopersici race 1 functions as a virulence gene in the cabbage yellows fungus F.Âoxysporum f. sp. conglutinans. Journal of General Plant Pathology, 2013, 79, 412-421.	1.0	27

#	Article	IF	CITATIONS
37	Genome sequence of a novel victorivirus identified in the phytopathogenic fungus Alternaria arborescens. Archives of Virology, 2016, 161, 1701-1704.	2.1	25
38	Magnaporthe oryzae chrysovirus 1 strain D confers growth inhibition to the host fungus and exhibits multiform viral structural proteins. Virology, 2019, 535, 241-254.	2.4	25
39	A pair of effectors encoded on a conditionally dispensable chromosome of Fusarium oxysporum suppress host-specific immunity. Communications Biology, 2021, 4, 707.	4.4	23
40	Novel mating type-dependent transcripts at the mating type locus in Magnaporthe oryzae. Gene, 2007, 403, 6-17.	2.2	22
41	Variation and Phylogeny of Fusarium oxysporum Isolates Based on Nucleotide Sequences of Polygalacturonase Genes. Microbes and Environments, 2009, 24, 113-120.	1.6	22
42	Contrasting Codon Usage Patterns and Purifying Selection at the Mating Locus in Putatively Asexual Alternaria Fungal Species. PLoS ONE, 2011, 6, e20083.	2.5	22
43	Immunological Detection of endoPolygalacturonase Secretion by Fusarium oxysporum in Plant Tissue and Sequencing of Its Encoding Gene Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1998, 64, 7-15.	0.1	22
44	Genome sequence of a novel mitovirus identified in the phytopathogenic fungus Alternaria arborescens. Archives of Virology, 2016, 161, 2627-2631.	2.1	21
45	Two Novel Endornaviruses Co-infecting a Phytophthora Pathogen of Asparagus officinalis Modulate the Developmental Stages and Fungicide Sensitivities of the Host Oomycete. Frontiers in Microbiology, 2021, 12, 633502.	3.5	20
46	GMC oxidoreductase, a highly expressed protein in a potent biocontrol agent Fusarium oxysporum Cong:1-2, is dispensable for biocontrol activity. Journal of General and Applied Microbiology, 2011, 57, 207-217.	0.7	19
47	Subcellular distribution and translocation of radionuclides in plants. Environmental Toxicology and Chemistry, 1999, 18, 2023-2027.	4.3	18
48	Control of clubroot of crucifers byPhoma glomerataand its product epoxydon. , 1999, 55, 602-604.		18
49	Haematocin, a New Antifungal Diketopiperazine Produced by Nectria haematococca Berk. et Br. (880701a-1) Causing Nectria Blight Disease on Ornamental Plants Journal of Antibiotics, 2000, 53, 45-49.	2.0	18
50	Infection by Magnaporthe oryzae chrysovirus 1 strain A triggers reduced virulence and pathogenic race conversion of its host fungus, Magnaporthe oryzae. Journal of General Plant Pathology, 2018, 84, 92-103.	1.0	18
51	High-Quality Draft Genome Sequence of Fusarium oxysporum f. sp. <i>cubense</i> Strain 160527, a Causal Agent of Panama Disease. Microbiology Resource Announcements, 2019, 8, .	0.6	18
52	Detection of Fusarium spp. in Plants with Monoclonal Antibody Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1995, 61, 311-317.	0.1	18
53	A new biotype of <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> race 2 emerged by a transposon-driven mutation of avirulence gene <i>AVR1</i> . FEMS Microbiology Letters, 2016, 363, fnw132.	1.8	17
54	Acibenzolar- <i>S</i> -Methyl Restricts Infection of <i>Nicotiana benthamiana</i> by Plantago Asiatica Mosaic Virus at Two Distinct Stages. Molecular Plant-Microbe Interactions, 2019, 32, 1475-1486.	2.6	17

#	Article	IF	CITATIONS
55	Spray Application of Nonpathogenic Fusaria onto Rice Flowers Controls Bakanae Disease (Caused by) Tj ETQq1	1 0,784314 3.1	rgBT /Over
56	Assessment of Gibberella fujikuroi mating type by PCR. Mycoscience, 1999, 40, 311-314.	0.8	16
57	Targeted Gene Disruption of the Neuronal Calcium Sensor 1 Homologue in Rice Blast Fungus,Magnaporthe grisea. Bioscience, Biotechnology and Biochemistry, 2003, 67, 651-653.	1.3	16
58	Control efficacy of validamycin A against Fusarium wilt correlated with the severity of phytotoxic necrosis formed on tomato tissues. Journal of Pesticide Sciences, 2007, 32, 83-88.	1.4	15
59	Site-specific DNA double-strand break generated by I-Scel endonuclease enhances ectopic homologous recombination in <i>Pyricularia oryzae</i> . FEMS Microbiology Letters, 2014, 352, 221-229.	1.8	15
60	Biological control of fusarium wilt of bottle gourd by mix-cropping with welsh onion or Chinese chive inoculated with Pseudomonas gladioli Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1987, 53, 531-539.	0.1	14
61	Phylogeny and phytopathogenicity mechanisms of soilborne Fusarium oxysporum. Journal of General Plant Pathology, 2010, 76, 403-405.	1.0	14
62	Unique Terminal Regions and Specific Deletions of the Segmented Double-Stranded RNA Genome of Alternaria Alternata Virus 1, in the Proposed Family Alternaviridae. Frontiers in Microbiology, 2021, 12, 773062.	3.5	14
63	Genetic diversity of Fusarium oxysporum f. sp. spinaciae in Japan based on phylogenetic analyses of rDNA-IGS and MAT1 sequences. Journal of General Plant Pathology, 2007, 73, 353-359.	1.0	13
64	Detection of Magnaporthe oryzae chrysovirus 1 in Japan and establishment of a rapid, sensitive and direct diagnostic method based on reverse transcription loop-mediated isothermal amplification. Archives of Virology, 2016, 161, 317-326.	2.1	13
65	Construction of a system for exploring mitotic homologous recombination in the genome of Pyricularia oryzae. Journal of General Plant Pathology, 2013, 79, 422-430.	1.0	12
66	Sequencing of individual chromosomes of plant pathogenic Fusarium oxysporum. Fungal Genetics and Biology, 2017, 98, 46-51.	2.1	12
67	Transgenic rice plants that over-express the mannose-binding rice lectin have enhanced resistance to rice blast. Journal of General Plant Pathology, 2011, 77, 85-92.	1.0	11
68	Detection of cabbage yellows fungus Fusarium oxysporum f. sp. conglutinans in soil by PCR and real-time PCR. Journal of General Plant Pathology, 2016, 82, 240-247.	1.0	10
69	Suppressive effects of mycoviral proteins encoded by Magnaporthe oryzae chrysovirus 1 strain A on conidial germination of the rice blast fungus. Virus Research, 2016, 223, 10-19.	2.2	10
70	Differences in infectivity and pathogenicity of two Plantago asiatica mosaic virus isolates in lilies. European Journal of Plant Pathology, 2019, 153, 813-823.	1.7	10
71	Mode of action of Talaromyces sp. KNB422, a biocontrol agent against rice seedling diseases. Journal of Pesticide Sciences, 2012, 37, 56-61.	1.4	9
72	A detection method based on reverse transcription loop-mediated isothermal amplification for a genetically heterogeneous plantago asiatica mosaic virus. Journal of General Plant Pathology, 2015, 81, 297-303.	1.0	9

#	Article	IF	CITATIONS
73	Population Structure of Double-Stranded RNA Mycoviruses That Infect the Rice Blast Fungus Magnaporthe oryzae in Japan. Frontiers in Microbiology, 2020, 11, 593784.	3.5	9
74	Production and Partial Characterization of Monoclonal Antibodies against Fusarium oxysporum 860926a Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1991, 57, 696-701.	0.1	9
75	FCD1 encoding protein homologous to cellobiose: Quinone oxidoreductase in Fusarium oxysporum. Gene, 2006, 382, 100-110.	2.2	8
76	Characterization of the antigenic determinant on Fusarium oxysporum recognized by a genus-specific monoclonal antibody Journal of General and Applied Microbiology, 1998, 44, 43-47.	0.7	8
77	Gel Penetrate-blotted Immunobinding Assay, a Novel Method for Serological Detection of <i>Fusarium</i> spp. in Soil. Journal of Pesticide Sciences, 1997, 22, 321-325.	1.4	7
78	Biocontrol activity in a nonpathogenic REMI mutant of <i>Fusarium oxysporum</i> f. sp. <i>conglutinans</i> and characterization of its disrupted gene. Journal of Pesticide Sciences, 2008, 33, 234-242.	1.4	6
79	Rapid sex identification method of spinach (Spinacia oleracea L.) in the vegetative stage using loop-mediated isothermal amplification. Planta, 2017, 245, 221-226.	3.2	6
80	Panama disease of banana occurred in Miyakojima Island, Okinawa, Japan. Journal of General Plant Pathology, 2018, 84, 165-168.	1.0	6
81	A putative RNA silencing component protein FoQde-2 is involved in virulence of the tomato wilt fungus Fusarium oxysporum f. sp. lycopersici. Journal of General Plant Pathology, 2018, 84, 395-398.	1.0	6
82	Identification of a Proline-Kinked Amphipathic α-Helix Downstream from the Methyltransferase Domain of a Potexvirus Replicase and Its Role in Virus Replication and Perinuclear Complex Formation. Journal of Virology, 2021, 95, e0190620.	3.4	6
83	Possible roles and functions of LPL1 gene encoding lysophospholipase during early infection by Magnaporthe grisea. Journal of General Plant Pathology, 2005, 71, 253-262.	1.0	5
84	Fusarium proliferatum, an additional bulb rot pathogen of Chinese chive. Journal of General Plant Pathology, 2013, 79, 431-434.	1.0	5
85	Cytological karyotyping of Fusarium oxysporum by the germ tube burst method (GTBM). Journal of General Plant Pathology, 2018, 84, 254-261.	1.0	5
86	Induction of resistance to diseases in plant by aerial ultrasound irradiation. Journal of Pesticide Sciences, 2019, 44, 41-47.	1.4	4
87	Antifungal activity of bacteria isolated from Japanese frog skin against plant pathogenic fungi. Biological Control, 2021, 153, 104498.	3.0	4
88	A New Disease of Phalaenopsis and Doritaenopsis Caused by Nectria haematococca Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1992, 58, 452-455.	0.1	4
89	Isolation and analysis of genes from phytopathogenic fungi. Progress in Biotechnology, 2002, , 61-74.	0.2	3
90	Heterotrimeric G protein β subunit GPB1 and MAP kinase MPK1 regulate hyphal growth and female fertility in Fusarium sacchari. Mycoscience, 2013, 54, 148-157.	0.8	3

#	Article	IF	CITATIONS
91	Experimental evidence of a pathogenic change caused by homologous recombination between endogenous and introduced dysfunctional Avr-Pita genes in Pyricularia oryzae. Journal of General Plant Pathology, 2014, 80, 153-157.	1.0	3
92	Expression specificity of CBP1 is regulated by transcriptional repression during vegetative growth of Magnaporthe oryzae. Journal of General and Applied Microbiology, 2010, 56, 437-445.	0.7	3
93	Stem blight, a new disease of exacum by Nectria gliocladioides Smalley et Hansen Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1987, 53, 570-575.	0.1	3
94	Acibenzolar-S-methyl-mediated restriction of loading of plantago asiatica mosaic virus into vascular tissues of Nicotiana benthamiana. Virus Research, 2021, 306, 198585.	2.2	3
95	4-Allyl-2-azetidinone and <i>Penicillium simplicissimum</i> Cooperate to Control Soilborne Fusarium Diseases. Journal of Pesticide Sciences, 1997, 22, 113-118.	1.4	2
96	Potential of Octanol and Octanal from Heracleum sosnowskyi Fruits for the Control of Fusarium oxysporum f. sp. lycopersici. Sustainability, 2020, 12, 9334.	3.2	2
97	Mutations Found in the Asc1 Gene That Confer Susceptibility to the AAL-Toxin in Ancestral Tomatoes from Peru and Mexico. Plants, 2021, 10, 47.	3.5	2
98	A new era in plant pathology in Japan: incorporation of the Phytopathological Society of Japan and research reform directed by genomic studies. Journal of General Plant Pathology, 2020, 86, 519-522.	1.0	1
99	The effect of chemicals on somatic homologous recombination in the rice blast fungus: its possible application for detection of mycotoxins. Mycotoxins, 2014, 64, 141-146.	0.2	1
100	Mating Type Genes of Ascomycetes. Journal of Pesticide Sciences, 2000, 25, 44-50.	1.4	0
101	Fusariosis in rubber tree: pathogenic, morphological, and molecular characterization of the causal agent. European Journal of Plant Pathology, 0, , 1.	1.7	0
102	Contribution of Receptor-Research toward Pesticide Sciences. Journal of Pesticide Sciences, 2004, 29, 265-266.	1.4	0
103	The prospects of plant activators through biological features. Journal of Pesticide Sciences, 2009, 34, 324-325.	1.4	0
104	Immunology-based Diagnostics for Soilborne Diseases. Journal of Pesticide Sciences, 1998, 23, 349-356.	1.4	0
105	Differentiation of the Pea Wilt Pathogen <i>Fusarium oxysporum</i> f. sp. <i>pisi</i> from Other Isolates of <i>Fusarium</i> Species by PCR. Microbes and Environments, 2022, 37, n/a.	1.6	0
106	Ophiosphaerella agrostidis causes leaf-sheath rot of Zingiber mioga. Journal of General Plant Pathology, 0, , 1.	1.0	0