List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4596722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CVD Growth of High-quality Graphene and Visualization of the Growth Process. Vacuum and Surface Science, 2022, 65, 177-183.	0.1	0
2	Graphene-based deep-ultraviolet photodetectors with ultrahigh responsivity using chemical vapor deposition of hexagonal boron nitride to achieve photogating. Optical Materials Express, 2022, 12, 2090.	3.0	9
3	Stacking Orientation-Dependent Photoluminescence Pathways in Artificially Stacked Bilayer WS ₂ Nanosheets Grown by Chemical Vapor Deposition: Implications for Spintronics and Valleytronics. ACS Applied Nano Materials, 2021, 4, 3717-3724.	5.0	19
4	Polymorphic Phases of Metal Chlorides in the Confined 2D Space of Bilayer Graphene. Advanced Materials, 2021, 33, e2105898.	21.0	12
5	Coupling and Decoupling of Bilayer Graphene Monitored by Electron Energy Loss Spectroscopy. Nano Letters, 2021, 21, 10386-10391.	9.1	10

6 Polymorphic Phases of Metal Chlorides in the Confined 2D Space of Bilayer Graphene (Adv. Mater.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

7	Synthesis of High-Quality 2D Materials for Electronic Applications. , 2020, , .		2
8	Chemical Vapor Deposition Growth of Uniform Multilayer Hexagonal Boron Nitride Driven by Structural Transformation of a Metal Thin Film. ACS Applied Electronic Materials, 2020, 2, 3270-3278.	4.3	14
9	Isothermal Growth and Stacking Evolution in Highly Uniform Bernal-Stacked Bilayer Graphene. ACS Nano, 2020, 14, 6834-6844.	14.6	28
10	Scanning Moiré Fringe Method: A Superior Approach to Perceive Defects, Interfaces, and Distortion in 2D Materials. ACS Nano, 2020, 14, 6034-6042.	14.6	13
11	Electronic States of Electrochemically Doped Single-Layer Graphene Probed through Fano Resonance Effects in Raman Scattering. Journal of Physical Chemistry C, 2020, 124, 26428-26433.	3.1	3
12	Synthesis of sub-millimeter single-crystal grains of aligned hexagonal boron nitride on an epitaxial Ni film. Nanoscale, 2019, 11, 14668-14675.	5.6	16
13	Chemically Tuned p―and nâ€Type WSe ₂ Monolayers with High Carrier Mobility for Advanced Electronics. Advanced Materials, 2019, 31, e1903613.	21.0	111
14	Chemical Doping: Chemically Tuned p―and nâ€Type WSe ₂ Monolayers with High Carrier Mobility for Advanced Electronics (Adv. Mater. 42/2019). Advanced Materials, 2019, 31, 1970301.	21.0	4
15	Vapor Phase Selective Growth of Two-Dimensional Perovskite/WS ₂ Heterostructures for Optoelectronic Applications. ACS Applied Materials & Interfaces, 2019, 11, 40503-40511.	8.0	39
16	A novel graphene barrier against moisture by multiple stacking large-grain graphene. Scientific Reports, 2019, 9, 3777.	3.3	19
17	High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer. Nature Communications, 2018, 9, 1279.	12.8	76
18	Grain Boundaries and Gas Barrier Property of Graphene Revealed by Dark-Field Optical Microscopy. Journal of Physical Chemistry C, 2018, 122, 902-910.	3.1	9

#	Article	IF	CITATIONS
19	Hydrogen-Assisted Epitaxial Growth of Monolayer Tungsten Disulfide and Seamless Grain Stitching. Chemistry of Materials, 2018, 30, 403-411.	6.7	60
20	van der Waals interaction-induced photoluminescence weakening and multilayer growth in epitaxially aligned WS ₂ . Physical Chemistry Chemical Physics, 2018, 20, 29790-29797.	2.8	7
21	Surface-Mediated Aligned Growth of Monolayer MoS ₂ and In-Plane Heterostructures with Graphene on Sapphire. ACS Nano, 2018, 12, 10032-10044.	14.6	64
22	Acceleration of Photocarrier Relaxation in Graphene Achieved by Epitaxial Growth: Ultrafast Photoluminescence Decay of Monolayer Graphene on SiC. Journal of Physical Chemistry C, 2018, 122, 19273-19279.	3.1	10
23	Controlled Growth of Large-Area Uniform Multilayer Hexagonal Boron Nitride as an Effective 2D Substrate. ACS Nano, 2018, 12, 6236-6244.	14.6	77
24	Moisture barrier properties of single-layer graphene deposited on Cu films for Cu metallization. Japanese Journal of Applied Physics, 2018, 57, 04FC08.	1.5	8
25	Epitaxial chemical vapour deposition growth of monolayer hexagonal boron nitride on a Cu(111)/sapphire substrate. Physical Chemistry Chemical Physics, 2017, 19, 8230-8235.	2.8	40
26	Behavior and role of superficial oxygen in Cu for the growth of large single-crystalline graphene. Applied Surface Science, 2017, 408, 142-149.	6.1	32
27	High Mobility WS ₂ Transistors Realized by Multilayer Graphene Electrodes and Application to High Responsivity Flexible Photodetectors. Advanced Functional Materials, 2017, 27, 1703448.	14.9	113
28	Highly Conductive and Transparent Largeâ€Area Bilayer Graphene Realized by MoCl ₅ Intercalation. Advanced Materials, 2017, 29, 1702141.	21.0	50
29	Synthesis, structure and applications of graphene-based 2D heterostructures. Chemical Society Reviews, 2017, 46, 4572-4613.	38.1	275
30	Direct observation of electrically induced Pauli paramagnetism in single-layer graphene using ESR spectroscopy. Scientific Reports, 2016, 6, 34966.	3.3	12
31	A general method of fabricating free-standing, monolayer graphene electronic device and its property characterization. Sensors and Actuators A: Physical, 2016, 247, 24-29.	4.1	11
32	Two-Step Excitation Triggered by One-Photon Absorption on Linear Dispersion in Monolayer Graphene. Journal of Physical Chemistry C, 2016, 120, 11225-11229.	3.1	2
33	Enhancement of catalytic activity of AgPd@Pd/TiO ₂ nanoparticles under UV and visible photoirradiation. Journal of Materials Chemistry A, 2016, 4, 14649-14656.	10.3	21
34	Observation of spontaneous terahertz emission from optically pumped monolayer intrinsic graphene. , 2016, , .		0
35	Spatially Controlled Nucleation of Single-Crystal Graphene on Cu Assisted by Stacked Ni. ACS Nano, 2016, 10, 11196-11204.	14.6	43
36	In-situ measurement of the heat transport in defect- engineered free-standing single-layer graphene. Scientific Reports, 2016, 6, 21823.	3.3	26

#	Article	IF	CITATIONS
37	Highly Uniform Bilayer Graphene on Epitaxial Cu–Ni(111) Alloy. Chemistry of Materials, 2016, 28, 4583-4592.	6.7	103
38	Gate-Tunable Dirac Point of Molecular Doped Graphene. ACS Nano, 2016, 10, 2930-2939.	14.6	49
39	Visualization of Grain Structure and Boundaries of Polycrystalline Graphene and Two-Dimensional Materials by Epitaxial Growth of Transition Metal Dichalcogenides. ACS Nano, 2016, 10, 3233-3240.	14.6	70
40	Temperature dependent thermal conductivity of a suspended submicron graphene ribbon. Journal of Applied Physics, 2015, 117, .	2.5	35
41	Epitaxial CVD growth of high-quality graphene and recent development of 2D heterostructures. , 2015, , .		0
42	Tunable doping of graphene nanoribbon arrays by chemical functionalization. Nanoscale, 2015, 7, 3572-3580.	5.6	19
43	Growth Dynamics of Single-Layer Graphene on Epitaxial Cu Surfaces. Chemistry of Materials, 2015, 27, 5377-5385.	6.7	65
44	Controlled van der Waals Epitaxy of Monolayer MoS ₂ Triangular Domains on Graphene. ACS Applied Materials & Interfaces, 2015, 7, 5265-5273.	8.0	120
45	CVD Growth of High-Quality Single-Layer Graphene. , 2015, , 3-20.		13
46	AgPd@Pd/TiO ₂ nanocatalyst synthesis by microwave heating in aqueous solution for efficient hydrogen production from formic acid. Journal of Materials Chemistry A, 2015, 3, 10666-10670.	10.3	36
47	Vertical heterostructures of MoS ₂ and graphene nanoribbons grown by two-step chemical vapor deposition for high-gain photodetectors. Physical Chemistry Chemical Physics, 2015, 17, 25210-25215.	2.8	25
48	Graphene-channel FETs for photonic frequency double-mixing conversion over the sub-THz band. Solid-State Electronics, 2015, 103, 216-221.	1.4	62
49	Observation of spin-charge conversion in chemical-vapor-deposition-grown single-layer graphene. Applied Physics Letters, 2014, 105, .	3.3	23
50	Effects of substrate and transfer on CVD-grown graphene over sapphire-induced Cu films. Science China Chemistry, 2014, 57, 895-901.	8.2	12
51	Increased chemical reactivity achieved by asymmetrical â€Janus' functionalisation of graphene. RSC Advances, 2014, 4, 52215-52219.	3.6	28
52	Strain engineering the properties of graphene and other two-dimensional crystals. Physical Chemistry Chemical Physics, 2014, 16, 11124-11138.	2.8	199
53	Synthesis of high-density arrays of graphene nanoribbons by anisotropic metal-assisted etching. Carbon, 2014, 78, 339-346.	10.3	14
54	Controlled generation of atomic vacancies in chemical vapor deposited graphene by microwave oxygen plasma. Carbon, 2014, 79, 664-669.	10.3	26

#	Article	IF	CITATIONS
55	Structure and transport properties of the interface between CVD-grown graphene domains. Nanoscale, 2014, 6, 7288.	5.6	52
56	Formation of Oriented Graphene Nanoribbons over Heteroepitaxial Cu Surfaces by Chemical Vapor Deposition. Chemistry of Materials, 2014, 26, 5215-5222.	6.7	9
57	Ultra-fast synthesis of graphene by melt spinning. Carbon, 2013, 61, 299-304.	10.3	2
58	Enhanced Chemical Reactivity of Graphene Induced by Mechanical Strain. ACS Nano, 2013, 7, 10335-10343.	14.6	157
59	Epitaxial Growth and Electronic Properties of Large Hexagonal Graphene Domains on Cu(111) Thin Film. Applied Physics Express, 2013, 6, 075101.	2.4	83
60	Lattice-Oriented Catalytic Growth of Graphene Nanoribbons on Heteroepitaxial Nickel Films. ACS Nano, 2013, 7, 10825-10833.	14.6	27
61	Mechanical Strain of Chemically Functionalized Chemical Vapor Deposition Grown Graphene. Journal of Physical Chemistry C, 2013, 117, 3152-3159.	3.1	46
62	Near-Infrared Photoluminescence in the Femtosecond Time Region in Monolayer Graphene on SiO ₂ . ACS Nano, 2013, 7, 2335-2343.	14.6	27
63	Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD. Nanoscale, 2013, 5, 5773.	5.6	103
64	Dynamically generated pure spin current in single-layer graphene. Physical Review B, 2013, 87, .	3.2	62
65	Self-Assembly of Polar Phthalocyanine Molecules on Graphene Grown by Chemical Vapor Deposition. Journal of Physical Chemistry C, 2013, 117, 21849-21855.	3.1	42
66	Dynamics of photoexcited carriers in monolayer epitaxial graphene probed by photoluminescence in the near-infrared region. , 2013, , .		0
67	Dense Arrays of Highly Aligned Graphene Nanoribbons Produced by Substrate ontrolled Metalâ€Assisted Etching of Graphene. Advanced Materials, 2013, 25, 6562-6568.	21.0	33
68	Effect of Domain Boundaries on the Raman Spectra of Mechanically Strained Graphene. ACS Nano, 2012, 6, 10229-10238.	14.6	73
69	Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene. Journal of Physical Chemistry Letters, 2012, 3, 2228-2236.	4.6	136
70	Growth of Horizontally-Aligned Single-Walled Carbon Nanotubes on Sapphire Surface by Needle-Scratching Method. Japanese Journal of Applied Physics, 2012, 51, 04DN02.	1.5	0
71	On the nucleation of graphene by chemical vapor deposition. New Journal of Chemistry, 2012, 36, 73-77.	2.8	16
72	Domain Structure and Boundary in Single-Layer Graphene Grown on Cu(111) and Cu(100) Films. Journal of Physical Chemistry Letters, 2012, 3, 219-226.	4.6	209

#	Article	IF	CITATIONS
73	Step-templated CVD growth of aligned graphene nanoribbons supported by a single-layer graphene film. Nanoscale, 2012, 4, 5178.	5.6	21
74	Epitaxial growth of large-area single-layer graphene over Cu(1 1 1)/sapphire by atmospheric pressure CVD. Carbon, 2012, 50, 57-65.	10.3	252
75	Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon, 2012, 50, 2189-2196.	10.3	86
76	Growth of Horizontally-Aligned Single-Walled Carbon Nanotubes on Sapphire Surface by Needle-Scratching Method. Japanese Journal of Applied Physics, 2012, 51, 04DN02.	1.5	1
77	Ultrahigh-Vacuum-Assisted Control of Metal Nanoparticles for Horizontally Aligned Single-Walled Carbon Nanotubes with Extraordinary Uniform Diameters. Journal of Physical Chemistry C, 2011, 115, 13247-13253.	3.1	33
78	Synthesis of large area, homogeneous, single layer graphene films by annealing amorphous carbon on Co and Ni. Nano Research, 2011, 4, 531-540.	10.4	78
79	Combinatorial catalyst approach for high-density growth of horizontally aligned single-walled carbon nanotubes on sapphire. Carbon, 2011, 49, 176-186.	10.3	23
80	Effective Patterning of Metal Nanoparticles on Sapphire Surface for Aligned Growth of Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3867-3872.	0.9	3
81	Epitaxial Growth of Faceted Co Nanoparticles on Sapphire Surfaces. Chemistry Letters, 2010, 39, 964-965.	1.3	0
82	STEM observation of tungsten tips sharpened by field-assisted oxygen etching. Surface Science, 2010, 604, 1094-1099.	1.9	15
83	Patterned Growth of Graphene over Epitaxial Catalyst. Small, 2010, 6, 1226-1233.	10.0	35
84	Epitaxial Chemical Vapor Deposition Growth of Single-Layer Graphene over Cobalt Film Crystallized on Sapphire. ACS Nano, 2010, 4, 7407-7414.	14.6	279
85	Growth of horizontally aligned single-walled carbon nanotubes on anisotropically etched silicon substrate. Nanoscale, 2010, 2, 1708.	5.6	17
86	Orthogonal Growth of Horizontally Aligned Single-Walled Carbon Nanotube Arrays. Journal of Physical Chemistry C, 2010, 114, 12925-12930.	3.1	16
87	Effects of Water Vapor on Diameter Distribution of SWNTs Grown over Fe/MgO-Based Catalysts. Journal of Physical Chemistry C, 2010, 114, 3850-3856.	3.1	15
88	Top-down approach to align single-walled carbon nanotubes on silicon substrate. Applied Physics Letters, 2009, 94, .	3.3	22
89	Third-order nonlinear optical response in double-walled carbon nanotubes. Journal of Luminescence, 2009, 129, 1722-1725.	3.1	5
90	Direct Growth of Bent Carbon Nanotubes on Surface Engineered Sapphire. Journal of Physical Chemistry C, 2009, 113, 13121-13124.	3.1	11

#	Article	IF	CITATIONS
91	Horizontally Aligned Growth of Single-Walled Carbon Nanotubes on a Surface-Modified Silicon Wafer. Journal of Physical Chemistry C, 2009, 113, 8030-8034.	3.1	17
92	Unidirectional Growth of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2008, 130, 17264-17265.	13.7	26
93	Crystal Plane Dependent Growth of Aligned Single-Walled Carbon Nanotubes on Sapphire. Journal of the American Chemical Society, 2008, 130, 9918-9924.	13.7	164
94	Hole Doping to Aligned Single-Walled Carbon Nanotubes from Sapphire Substrate Induced by Heat Treatment. Journal of Physical Chemistry C, 2008, 112, 18350-18354.	3.1	4
95	Visualization of Horizontally-Aligned Single-Walled Carbon Nanotube Growth with13C/12C Isotopes. Journal of Physical Chemistry C, 2008, 112, 1735-1738.	3.1	30
96	Growth Mechanism of Carbon Nanotubes over Gold-Supported Catalysts. Japanese Journal of Applied Physics, 2008, 47, 1944.	1.5	25
97	Horizontally-Aligned Single-Walled Carbon Nanotubes on Sapphire. Journal of Nanoscience and Nanotechnology, 2008, 8, 6165-6169.	0.9	6
98	Directional Control of Single-Walled Carbon Nanotubes on Surface-Engineered Sapphire. , 2007, , .		0
99	Chemistry of Water-Assisted Carbon Nanotube Growth over Feâ^'Mo/MgO Catalyst. Journal of Physical Chemistry C, 2007, 111, 11577-11582.	3.1	54
100	Competition and cooperation between lattice-oriented growth and step-templated growth of aligned carbon nanotubes on sapphire. Applied Physics Letters, 2007, 90, 123112.	3.3	57
101	Horizontally-Aligned Single-Walled Carbon Nanotubes on Sapphire: Growth Mechanism and Characterization. , 2007, , .		0
102	Microreactor utilizing a vertically-aligned carbon nanotube array grown inside the channels. Chemical Communications, 2007, , 1626.	4.1	32
103	Thermal and Electrical Properties of a Suspended Nanoscale Thin Film. International Journal of Thermophysics, 2007, 28, 33-43.	2.1	26
104	Supramolecular Catalysts for the Gas-phase Synthesis of Single-walled Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 5849-5853.	2.6	63
105	Gas analysis of the CVD process for high yield growth of carbon nanotubes over metal-supported catalysts. Carbon, 2006, 44, 2912-2918.	10.3	134
106	Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized Raman spectroscopy. Chemical Physics Letters, 2006, 421, 399-403.	2.6	61
107	Non-linear optical response and relaxation dynamics in double-walled carbon nanotubes. Journal of Luminescence, 2006, 119-120, 8-12.	3.1	8
108	Experimental study on thermal characteristics of suspended platinum nanofilm sensors. International Journal of Heat and Mass Transfer, 2006, 49, 3879-3883.	4.8	22

#	Article	IF	CITATIONS
109	Mechanical immobilization of Hela cells on aligned carbon nanotube array. Materials Letters, 2006, 60, 3851-3854.	2.6	8
110	Formation mechanism of carbon nanotubes in the gas-phase synthesis from colloidal solutions of nanoparticles. Current Applied Physics, 2005, 5, 128-132.	2.4	19
111	Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chemical Physics Letters, 2005, 408, 433-438.	2.6	155
112	Measuring the Thermal Conductivity of a Single Carbon Nanotube. Physical Review Letters, 2005, 95, 065502.	7.8	734
113	Thermal and electrical conductivity of a suspended platinum nanofilm. Applied Physics Letters, 2005, 86, 171912.	3.3	126
114	CVD Growth of Single-Walled Carbon Nanotubes with Narrow Diameter Distribution over Fe/MgO Catalyst and Their Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 10035-10041.	2.6	125
115	Size Control of Metal Nanoparticle Catalysts for the Gas-Phase Synthesis of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 10647-10652.	2.6	88
116	Measurements of In-Plane Thermal Conductivity and Electrical Conductivity of Suspended Platinum Thin Film. Netsu Bussei, 2005, 19, 9-14.	0.1	6
117	The synthesis of In, In2O3 nanowires and In2O3 nanoparticles with shape-controlled. Journal of Crystal Growth, 2004, 264, 363-368.	1.5	66
118	STM study of molecular adsorption on single-wall carbon nanotube surface. Chemical Physics Letters, 2004, 383, 469-474.	2.6	15
119	Study of the growth of boron nanowires synthesized by laser ablation. Chemical Physics Letters, 2004, 385, 177-183.	2.6	22
120	Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO. Chemical Physics Letters, 2004, 391, 308-313.	2.6	84
121	Roles of Metalâ^'Support Interaction in Growth of Single- and Double-Walled Carbon Nanotubes Studied with Diameter-Controlled Iron Particles Supported on MgO. Journal of Physical Chemistry B, 2004, 108, 18908-18915.	2.6	117
122	Catalytic Effects in the Large-scale Synthesis of Carbon Nanotubes. Hyomen Kagaku, 2004, 25, 345-351.	0.0	0
123	Catalytic growth of carbon nanotubes and their patterning based on ink-jet and lithographic techniques. Journal of Electroanalytical Chemistry, 2003, 559, 25-30.	3.8	27
124	Ink-jet printing of nanoparticle catalyst for site-selective carbon nanotube growth. Applied Physics Letters, 2003, 82, 811-813.	3.3	84
125	High density current operation in nanographite fiber synthesized by chemical vapor deposition. Journal of Applied Physics, 2003, 94, 3516-3519.	2.5	3
126	Synthesis of crystalline boron nanowires by laser ablation. Chemical Communications, 2002, , 2806-2807.	4.1	65

#	Article	IF	CITATIONS
127	Polymer Composites of Carbon Nanotubes Aligned by a Magnetic Field. Advanced Materials, 2002, 14, 1380-1383.	21.0	436
128	Carbon nanotube synthesis using colloidal solution of metal nanoparticles. Physica B: Condensed Matter, 2002, 323, 306-307.	2.7	20
129	Gas-Phase Synthesis of Single-wall Carbon Nanotubes from Colloidal Solution of Metal Nanoparticles. Journal of Physical Chemistry B, 2001, 105, 10453-10456.	2.6	91
130	Colloidal Solution of Metal Nanoparticles as a Catalyst for Carbon Nanotube Growth. Materials Research Society Symposia Proceedings, 2000, 633, 13181.	0.1	0
131	Spin electronics using carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 848-851.	2.7	21
132	Electronic interaction between photoexcited poly(p-phenylene vinylene) and carbon nanotubes. Physical Review B, 2000, 61, 2286-2290.	3.2	129
133	Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Applied Physics Letters, 2000, 77, 79-81.	3.3	118
134	Ab Initio Study on Interaction and Stability of Lithiumâ€Đoped Amorphous Carbons. Journal of the Electrochemical Society, 1999, 146, 1262-1269.	2.9	22
135	Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature, 1999, 401, 572-574.	27.8	743
136	Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes. Journal of Physical Chemistry B, 1999, 103, 8116-8121.	2.6	910
137	Composites of Carbon Nanotubes and Conjugated Polymers for Photovoltaic Devices. Advanced Materials, 1999, 11, 1281-1285.	21.0	674
138	Workfunction of purified and oxidised carbon nanotubes. Synthetic Metals, 1999, 103, 2494-2495.	3.9	51
139	Frontiers of Carbon Nanotubes and Beyond. , 1999, , 164-183.		2
140	Theoretical design of donor-acceptor polymers with low bandgaps. Computational and Theoretical Chemistry, 1998, 427, 211-219.	1.5	9
141	Electronic structures of some novel functional polymers. Macromolecular Symposia, 1997, 118, 513-518.	0.7	2
142	Theoretical Study of Lithium-Doped Polycyclic Aromatic Hydrocarbons. Bulletin of the Chemical Society of Japan, 1997, 70, 1717-1726.	3.2	30
143	Electronic Properties of p-Type Doped Copolymers Consisting of Oligothienylene and Disilanylene Units. Chemistry of Materials, 1997, 9, 1159-1165.	6.7	11
144	Structure and properties of deeply Li-doped polyacenic semiconductor (PAS). Synthetic Metals, 1997, 86, 2411-2414.	3.9	9

#	Article	IF	CITATIONS
145	ESR study of Li-doped polyacenic semiconductor (PAS) materials. Synthetic Metals, 1997, 89, 133-139.	3.9	13
146	7Li NMR study of Li-doped polyacenic semiconductor (PAS) materials. Synthetic Metals, 1997, 89, 141-147.	3.9	15
147	Bond alternation in carbon nanotubes including ?-electrons. International Journal of Quantum Chemistry, 1997, 63, 637-644.	2.0	32
148	Interlayer interaction of two graphene sheets as a model of double-layer carbon nanotubes. Carbon, 1997, 35, 121-125.	10.3	52
149	ESR study of alkali-doped polyacenic semiconductor (PAS) materials prepared by thermal decomposition of azides. Carbon, 1997, 35, 651-656.	10.3	1
150	Structural analysis of polyacenic semiconductor (PAS) materials with 129 Xenon NMR measurements. Carbon, 1997, 35, 1781-1787.	10.3	27
151	Design of novel donor-acceptor polymers with low bandgaps. Synthetic Metals, 1996, 79, 115-120.	3.9	22
152	Electronic property of polyacene in a constant magnetic field perpendicular to the condensed aromatic-ring plane. Synthetic Metals, 1996, 79, 145-148.	3.9	0
153	Magnetic Properties of 1,3,5-Tris[bis(p-methoxyphenyl)amino]benzene Cation Radicals. Bulletin of the Chemical Society of Japan, 1996, 69, 1417-1422.	3.2	13
154	Electronic structures of donor-acceptor polymers based on polythiophene, polyfuran and polypyrrole. Molecular Engineering, 1996, 6, 239-248.	0.2	9
155	Electronic properties of polymers based on thienothiadiazole and thiophene. Journal of Chemical Physics, 1996, 104, 5528-5538.	3.0	26
156	An ESR analysis of C60S16. Chemical Physics Letters, 1995, 235, 217-220.	2.6	5
157	Design of ferromagnetic polymers involving organosilicon moieties. Synthetic Metals, 1995, 72, 225-229.	3.9	21
158	Electronic Structures of Organosilicon Polymers Containing Thienylene Units. Organometallics, 1994, 13, 3496-3501.	2.3	34
159	Polymeric Organosilicon Systems. 22. Synthesis and Photochemical Properties of Poly[(disilanylene)oligophenylylenes] and Poly[(silylene)biphenylylenes]. Organometallics, 1994, 13, 5002-5012.	2.3	54