Pablo Alonso-GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4596715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Active and Passive Tuning of Ultranarrow Resonances in Polaritonic Nanoantennas. Advanced Materials, 2022, 34, e2104954.	21.0	13
2	Active Tuning of Highly Anisotropic Phonon Polaritons in Van der Waals Crystal Slabs by Gated Graphene. ACS Photonics, 2022, 9, 383-390.	6.6	37
3	Anisotropy and Modal Hybridization in Infrared Nanophotonics Using Low-Symmetry Materials. ACS Photonics, 2022, 9, 1078-1095.	6.6	18
4	Active control of micrometer plasmon propagation in suspended graphene. Nature Communications, 2022, 13, 1465.	12.8	31
5	Manipulating polaritons at the extreme scale in van der Waals materials. Nature Reviews Physics, 2022, 4, 578-594.	26.6	51
6	Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nature Photonics, 2021, 15, 197-202.	31.4	90
7	Nanoscaleâ€Confined Terahertz Polaritons in a van der Waals Crystal. Advanced Materials, 2021, 33, e2005777.	21.0	53
8	Extracting the Infrared Permittivity of SiO2 Substrates Locally by Near-Field Imaging of Phonon Polaritons in a van der Waals Crystal. Nanomaterials, 2021, 11, 120.	4.1	7
9	Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nature Communications, 2021, 12, 854.	12.8	154
10	Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition. Science Advances, 2021, 7, .	10.3	53
11	Planar refraction and lensing of highly confined polaritons in anisotropic media. Nature Communications, 2021, 12, 4325.	12.8	48
12	Hyperspectral Nanoimaging of van der Waals Polaritonic Crystals. Nano Letters, 2021, 21, 7109-7115.	9.1	13
13	Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas. Science Advances, 2021, 7, eabj0127.	10.3	36
14	Van der Waals Semiconductors: Infrared Permittivity of the Biaxial van der Waals Semiconductor αâ€MoO ₃ from Near―and Farâ€Field Correlative Studies (Adv. Mater. 29/2020). Advanced Materials, 2020, 32, 2070220.	21.0	5
15	Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation. Nature Communications, 2020, 11, 2646.	12.8	54
16	Twisted Nano-Optics: Manipulating Light at the Nanoscale with Twisted Phonon Polaritonic Slabs. Nano Letters, 2020, 20, 5323-5329.	9.1	126
17	Infrared Permittivity of the Biaxial van der Waals Semiconductor αâ€MoO ₃ from Near―and Farâ€Field Correlative Studies. Advanced Materials, 2020, 32, e1908176.	21.0	99
18	Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons. Advanced Materials, 2020, 32, e1906530.	21.0	29

Pablo Alonso-GonzÃilez

#	Article	IF	CITATIONS
19	Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nature Materials, 2020, 19, 964-968.	27.5	129
20	Nanofocusing of acoustic graphene plasmon polaritons for enhancing mid-infrared molecular fingerprints. Nanophotonics, 2020, 9, 2089-2095.	6.0	12
21	Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas. Nature Communications, 2019, 10, 3242.	12.8	56
22	Strain-Tunable Single Photon Sources in WSe ₂ Monolayers. Nano Letters, 2019, 19, 6931-6936.	9.1	71
23	On the Large Near-Field Enhancement on Nanocolumnar Gold Substrates. Scientific Reports, 2019, 9, 13933.	3.3	8
24	Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals. Physical Review B, 2019, 100, .	3.2	67
25	Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material. Nature Communications, 2019, 10, 42.	12.8	51
26	La vid y el vino en el Cono Sur de América Argentina y Chile (1545-2019). Aspectos polÃticos, económicos, sociales, culturales y enológicos. Mendoza, 2019. ROTUR Revista De Ocio Y Turismo, 2019, 13, 86-89.	0.3	0
27	Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light: Science and Applications, 2018, 7, 17172-17172.	16.6	257
28	In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 2018, 562, 557-562.	27.8	506
29	Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nature Communications, 2017, 8, 15624.	12.8	121
30	Tuning quantum nonlocal effects in graphene plasmonics. Science, 2017, 357, 187-191.	12.6	251
31	Acoustic Graphene Plasmon Nanoresonators for Field-Enhanced Infrared Molecular Spectroscopy. ACS Photonics, 2017, 4, 3089-3097.	6.6	43
32	Terahertz Nanofocusing with Cantilevered Terahertz-Resonant Antenna Tips. Nano Letters, 2017, 17, 6526-6533.	9.1	84
33	Intrinsic Plasmon–Phonon Interactions in Highly Doped Graphene: AÂNear-Field Imaging Study. Nano Letters, 2017, 17, 5908-5913.	9.1	42
34	Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride. Npj 2D Materials and Applications, 2017, 1, .	7.9	25
35	Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nature Nanotechnology, 2017, 12, 31-35.	31.5	257
36	Thermoelectric detection and imaging of propagating grapheneÂplasmons. Nature Materials, 2017, 16, 204-207.	27.5	141

Pablo Alonso-GonzÃilez

#	Article	IF	CITATIONS
37	Nanofocusing of Hyperbolic Phonon Polaritons in a Tapered Boron Nitride Slab. ACS Photonics, 2016, 3, 924-929.	6.6	44
38	Near-field photocurrent nanoscopy on bare and encapsulated graphene. Nature Communications, 2016, 7, 10783.	12.8	80
39	Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nature Photonics, 2016, 10, 239-243.	31.4	167
40	Mapping the near fields of plasmonic nanoantennas by scatteringâ€ŧype scanning nearâ€field optical microscopy. Laser and Photonics Reviews, 2015, 9, 637-649.	8.7	81
41	Graphene opto-electronics and plasmonics for infrared frequencies. , 2015, , .		0
42	Plasmons in Cylindrical 2D Materials as a Platform for Nanophotonic Circuits. ACS Photonics, 2015, 2, 280-286.	6.6	58
43	Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nature Materials, 2015, 14, 421-425.	27.5	847
44	Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science, 2014, 344, 1369-1373.	12.6	292
45	Efficient Coupling of Light to Graphene Plasmons by Compressing Surface Polaritons with Tapered Bulk Materials. Nano Letters, 2014, 14, 2896-2901.	9.1	80
46	Fabrication of Semiconductor Quantum Dot Molecules: Droplet Epitaxy and Local Oxidation Nanolithography Techniques. Lecture Notes in Nanoscale Science and Technology, 2014, , 1-28.	0.8	0
47	Strong Plasmon Reflection at Nanometer-Size Gaps in Monolayer Graphene on SiC. Nano Letters, 2013, 13, 6210-6215.	9.1	121
48	Experimental Verification of the Spectral Shift between Near- and Far-Field Peak Intensities of Plasmonic Infrared Nanoantennas. Physical Review Letters, 2013, 110, 203902.	7.8	144
49	Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas. Optics Express, 2013, 21, 1270.	3.4	52
50	Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nature Communications, 2012, 3, 684.	12.8	207
51	Optical nano-imaging of gate-tunable graphene plasmons. Nature, 2012, 487, 77-81.	27.8	1,820
52	Propagation and nanofocusing of infrared surface plasmons on tapered transmission lines: Influence of the substrate. Optics Communications, 2012, 285, 3378-3382.	2.1	4
53	Real-Space Mapping of Fano Interference in Plasmonic Metamolecules. Nano Letters, 2011, 11, 3922-3926.	9.1	129
54	Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes. Optics Express, 2011, 19, 15047.	3.4	94

#	Article	IF	CITATIONS
55	Nanofocusing of mid-infrared energy with tapered transmission lines. Nature Photonics, 2011, 5, 283-287.	31.4	203
56	Plasmonic Nickel Nanoantennas. Small, 2011, 7, 2341-2347.	10.0	175
5 7	Charge control in laterally coupled double quantum dots. Physical Review B, 2011, 84, .	3.2	27
58	Mid-infrared nanophotonics based on antennas and transmission lines. , 2011, , .		0
59	Compositional Analysis with Atomic Column Spatial Resolution by 5th-Order Aberration-Corrected Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2011, 17, 578-581.	0.4	16
60	Emission properties of single InAs/GaAs quantum dot pairs and molecules grown in GaAs nanoholes. Journal of Physics: Conference Series, 2010, 210, 012028.	0.4	1
61	Growth of Low-Density Vertical Quantum Dot Molecules with Control in Energy Emission. Nanoscale Research Letters, 2010, 5, 1913-1916.	5.7	7
62	Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy. Applied Surface Science, 2010, 256, 5659-5661.	6.1	4
63	Direct formation of InAs quantum dots grown on InP (001) by solid-source molecular beam epitaxy. Applied Physics Letters, 2009, 94, .	3.3	10
64	Site-controlled lateral arrangements of InAs quantum dots grown on GaAs(001) patterned substrates by atomic force microscopy local oxidation nanolithography. Nanotechnology, 2009, 20, 125302.	2.6	27
65	Surface Localization of Buried III–V Semiconductor Nanostructures. Nanoscale Research Letters, 2009, 4, 873-877.	5.7	4
66	Formation of Lateral Low Density In(Ga)As Quantum Dot Pairs in GaAs Nanoholes. Crystal Growth and Design, 2009, 9, 2525-2528.	3.0	33
67	Formation of Spatially Addressed Ga(As)Sb Quantum Rings on GaAs(001) Substrates by Droplet Epitaxy. Crystal Growth and Design, 2009, 9, 1216-1218.	3.0	10
68	Single Photon Emission from Site-Controlled InAs Quantum Dots Grown on GaAs(001) Patterned Substrates. ACS Nano, 2009, 3, 1513-1517.	14.6	50
69	Improvement of InAs quantum dots optical properties in close proximity to GaAs(001) substrate surface. Journal of Crystal Growth, 2008, 310, 4676-4680.	1.5	8
70	Low density InAs quantum dots with control in energy emission and top surface location. Applied Physics Letters, 2008, 93, 183106.	3.3	34
71	Characterization and modelling of semiconductor quantum nanostructures grown by droplet epitaxy. , 2008, , 91-92.		0
72	New process for high optical quality InAs quantum dots grown on patterned GaAs(001) substrates. Nanotechnology, 2007, 18, 355302.	2.6	26

#	Article	IF	CITATIONS
73	Formation and optical characterization of single InAs quantum dots grown on GaAs nanoholes. Applied Physics Letters, 2007, 91, 163104.	3.3	39
74	Ordered InAs QDs using prepatterned substrates by monolithically integrated porous alumina. Journal of Crystal Growth, 2006, 294, 168-173.	1.5	16