Juliet M Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4596081/publications.pdf

Version: 2024-02-01

471509 526287 1,987 27 17 27 citations h-index g-index papers 27 27 27 3463 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The contribution of astrocytes and microglia to traumatic brain injury. British Journal of Pharmacology, 2016, 173, 692-702.	5.4	447
2	The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease. Journal of Neurochemistry, 2016, 136, 457-474.	3.9	331
3	Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson's disease. Neurochemistry International, 2013, 62, 803-819.	3.8	250
4	Type-1 interferon signaling mediates neuro-inflammatory events in models of Alzheimer's disease. Neurobiology of Aging, 2014, 35, 1012-1023.	3.1	120
5	STING-mediated type-I interferons contribute to the neuroinflammatory process and detrimental effects following traumatic brain injury. Journal of Neuroinflammation, 2018, 15, 323.	7.2	95
6	Inflammation in Traumatic Brain Injury: Roles for Toxic A1 Astrocytes and Microglial–Astrocytic Crosstalk. Neurochemical Research, 2019, 44, 1410-1424.	3.3	82
7	Potential Contribution of NF-κB in Neuronal Cell Death in the Glutathione Peroxidase-1 Knockout Mouse in Response to Ischemia-Reperfusion Injury. Stroke, 2006, 37, 1533-1538.	2.0	81
8	Typeâ€1 interferons contribute to the neuroinflammatory response and disease progression of the MPTP mouse model of Parkinson's disease. Glia, 2016, 64, 1590-1604.	4.9	71
9	Type-I interferon pathway in neuroinflammation and neurodegeneration: focus on Alzheimer's disease. Journal of Neural Transmission, 2018, 125, 797-807.	2.8	66
10	Deletion of the type-1 interferon receptor in APPSWE/PS1î"E9 mice preserves cognitive function and alters glial phenotype. Acta Neuropathologica Communications, 2016, 4, 72.	5.2	58
11	Diminished Akt phosphorylation in neurons lacking glutathione peroxidase-1 (Gpx1) leads to increased susceptibility to oxidative stress-induced cell death. Journal of Neurochemistry, 2005, 92, 283-293.	3.9	52
12	Ablation of Type-1 IFN Signaling in Hematopoietic Cells Confers Protection Following Traumatic Brain Injury. ENeuro, 2016, 3, ENEURO.0128-15.2016.	1.9	48
13	Parkin Co-regulated Gene (PACRG) is regulated by the ubiquitin–proteasomal system and is present in the pathological features of parkinsonian diseases. Neurobiology of Disease, 2007, 27, 238-247.	4.4	32
14	Parkin Co-Regulated Gene is involved in aggresome formation and autophagy in response to proteasomal impairment. Experimental Cell Research, 2012, 318, 2059-2070.	2.6	28
15	The Complexity of the cGAS-STING Pathway in CNS Pathologies. Frontiers in Neuroscience, 2021, 15, 621501.	2.8	28
16	The involvement of microglia in Alzheimer's disease: a new dog in the fight. British Journal of Pharmacology, 2019, 176, 3533-3543.	5.4	27
17	Type-I interferon signalling through IFNAR1 plays a deleterious role in the outcome after stroke. Neurochemistry International, 2017, 108, 472-480.	3.8	22
18	Type†interferons mediate the neuroinflammatory response and neurotoxicity induced by rotenone. Journal of Neurochemistry, 2017, 141, 75-85.	3.9	21

#	Article	IF	CITATIONS
19	Abrogation of type-I interferon signalling alters the microglial response to AÎ21–42. Scientific Reports, 2020, 10, 3153.	3.3	21
20	Expression and localization of the Parkin Co-Regulated Gene in mouse CNS suggests a role in ependymal cilia function. Neuroscience Letters, 2009, 460, 97-101.	2.1	17
21	The use of bioactive matrices in regenerative therapies for traumatic brain injury. Acta Biomaterialia, 2020, 102, 1-12.	8.3	17
22	Evidence for the recruitment of autophagic vesicles in human brain after stroke. Neurochemistry International, 2016, 96, 62-68.	3.8	16
23	Generation and characterisation of a parkin-Pacrg knockout mouse line and a Pacrg knockout mouse line. Scientific Reports, 2018, 8, 7528.	3.3	16
24	Molecular analysis of the PArkin co-regulated gene and association with male infertility. Fertility and Sterility, 2010, 93, 2262-2268.	1.0	15
25	Regional and cellular localisation of Parkin Co-Regulated Gene in developing and adult mouse brain. Brain Research, 2008, 1201, 177-186.	2.2	11
26	Analysis of PArkin Co-Regulated Gene in a Taiwanese–Ethnic Chinese cohort with early-onset Parkinson's disease. Parkinsonism and Related Disorders, 2009, 15, 417-421.	2.2	8
27	STING-Mediated Autophagy Is Protective against H2O2-Induced Cell Death. International Journal of Molecular Sciences, 2020, 21, 7059.	4.1	7