Laura Mancini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4595927/publications.pdf

Version: 2024-02-01

623734 677142 24 753 14 22 h-index citations g-index papers 30 30 30 1626 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?. Neurolmage, 2021, 243, 118502.	4.2	94
2	ApoE influences regional white-matter axonal density loss in Alzheimer's disease. Neurobiology of Aging, 2017, 57, 8-17.	3.1	82
3	Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson's disease. Scientific Reports, 2017, 7, 9882.	3.3	79
4	Connectivityâ€based parcellation of the thalamus in multiple sclerosis and its implications for cognitive impairment: A multicenter study. Human Brain Mapping, 2015, 36, 2809-2825.	3.6	69
5	Preventing visual field deficits from neurosurgery. Neurology, 2014, 83, 604-611.	1.1	67
6	World Health Organization Grade II/III Glioma Molecular Status: Prediction by MRI Morphologic Features and Apparent Diffusion Coefficient. Radiology, 2020, 296, 111-121.	7.3	62
7	The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices. PLoS ONE, 2015, 10, e0129077.	2.5	46
8	Deep brain stimulation has state-dependent effects on motor connectivity in Parkinson's disease. Brain, 2019, 142, 2417-2431.	7.6	33
9	A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning. Medical Image Analysis, 2019, 54, 220-237.	11.6	31
10	Correlates of Executive Functions in Multiple Sclerosis Based on Structural and Functional MR Imaging: Insights from a Multicenter Study. Radiology, 2016, 280, 869-879.	7.3	29
11	Design, Operation, and Safety of Singleâ€Room Interventional MRI Suites: Practical Experience From Two Centers. Journal of Magnetic Resonance Imaging, 2015, 41, 34-43.	3.4	26
12	Functional neuroanatomy of spatial sound processing in Alzheimer's disease. Neurobiology of Aging, 2016, 39, 154-164.	3.1	25
13	Imaging characteristics of H3 K27M histone-mutant diffuse midline glioma in teenagers and adults. Quantitative Imaging in Medicine and Surgery, 2021, 11, 43-56.	2.0	21
14	Susceptibility artefact correction using dynamic graph cuts: Application to neurosurgery. Medical Image Analysis, 2014, 18, 1132-1142.	11.6	19
15	Somatotopic organization of corticospinal/corticobulbar motor tracts in controls and patients with tumours: A combined fMRI–DTI study. NeuroImage: Clinical, 2019, 23, 101910.	2.7	12
16	CEST MRI provides amide/amine surrogate biomarkers for treatment-naÃ-ve glioma sub-typing. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2377-2391.	6.4	12
17	Regional and Volumetric Parameters for Diffusion-Weighted WHO Grade II and III Glioma Genotyping: A Method Comparison. American Journal of Neuroradiology, 2021, 42, 441-447.	2.4	9
18	Objective Bayesian fMRI analysisââ,¬â€a pilot study in different clinical environments. Frontiers in Neuroscience, 2015, 9, 168.	2.8	8

#	Article	IF	CITATION
19	Acquisition of sensorimotor fMRI under general anaesthesia: Assessment of feasibility, the BOLD response and clinical utility. Neurolmage: Clinical, 2019, 23, 101923.	2.7	8
20	A Semiautomatic Method for Multiple Sclerosis Lesion Segmentation on Dual-Echo MR Imaging: Application in a Multicenter Context. American Journal of Neuroradiology, 2016, 37, 2043-2049.	2.4	5
21	The Effect of Right Temporal Lobe Gliomas on Left and Right Hemisphere Neural Processing During Speech Perception and Production Tasks. Frontiers in Human Neuroscience, 2022, 16, .	2.0	5
22	ls Diffusion Tensor Imaging-Guided Radiotherapy the New State-of-the-Art? A Review of the Current Literature and Technical Insights. Applied Sciences (Switzerland), 2022, 12, 816.	2.5	1
23	[P4–230]: LONGITUDINAL NEURITE ORIENTATION DISPERSION AND DENSITY IMAGING IN YOUNGâ€ONSET ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P1359.	0.8	0
24	[ICâ€Pâ€168]: LONGITUDINAL NEURITE ORIENTATION DISPERSION AND DENSITY IMAGING IN YOUNGâ€ONSET ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P127.	0.8	0