
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4595902/publications.pdf Version: 2024-02-01

HVIIN-CHAN KIM

#	Article	IF	CITATIONS
1	A review of piezoelectric energy harvesting based on vibration. International Journal of Precision Engineering and Manufacturing, 2011, 12, 1129-1141.	2.2	861
2	Discovery of Cellulose as a Smart Material. Macromolecules, 2006, 39, 4202-4206.	4.8	639
3	Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing - Green Technology, 2015, 2, 197-213.	4.9	373
4	Recent developments in polymers/polymer nanocomposites for additive manufacturing. Progress in Materials Science, 2020, 111, 100638.	32.8	299
5	Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose, 2010, 17, 83-91.	4.9	225
6	Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sensors and Actuators A: Physical, 2011, 165, 194-199.	4.1	186
7	Preparation and characterization of a Bacterial cellulose/Chitosan composite for potential biomedical application. Journal of Polymer Research, 2011, 18, 739-744.	2.4	179
8	Transparent and Flexible Cellulose Nanocrystal/Reduced Graphene Oxide Film for Proximity Sensing. Small, 2015, 11, 994-1002.	10.0	172
9	Electro-active paper actuators. Smart Materials and Structures, 2002, 11, 355-360.	3.5	150
10	Reduced graphene oxide filled cellulose films for flexible temperature sensor application. Synthetic Metals, 2015, 206, 154-161.	3.9	127
11	Review of Soft Actuator Materials. International Journal of Precision Engineering and Manufacturing, 2019, 20, 2221-2241.	2.2	122
12	Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics. Scientific Reports, 2017, 7, 17683.	3.3	120
13	Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Physical Chemistry Chemical Physics, 2015, 17, 5923-5931.	2.8	116
14	FINITE ELEMENT MODELLING OF STRUCTURES INCLUDING PIEZOELECTRIC ACTIVE DEVICES. International Journal for Numerical Methods in Engineering, 1997, 40, 817-832.	2.8	115
15	Cellulose based electro-active papers: performance and environmental effects. Smart Materials and Structures, 2006, 15, 719-723.	3.5	108
16	Cellulose nanocrystal/graphene oxide composite film as humidity sensor. Sensors and Actuators A: Physical, 2016, 247, 221-226.	4.1	105
17	Preparation and characterization of synthetic melanin-like nanoparticles reinforced chitosan nanocomposite films. Carbohydrate Polymers, 2020, 231, 115729.	10.2	101
18	Multi-walled carbon nanotubes–cellulose paper for a chemical vapor sensor. Sensors and Actuators B: Chemical, 2010, 150, 308-313.	7.8	98

#	Article	lF	CITATIONS
19	Disposable chemical sensors and biosensors made on cellulose paper. Nanotechnology, 2014, 25, 092001.	2.6	98
20	Finite-element modeling of a smart cantilever plate and comparison with experiments. Smart Materials and Structures, 1996, 5, 165-170.	3.5	94
21	Flexible NO2 sensors from renewable cellulose nanocrystals/iron oxide composites. Sensors and Actuators B: Chemical, 2016, 233, 633-638.	7.8	94
22	Cellulose/graphene nanocomposite as multifunctional electronic and solvent sensor material. Materials Letters, 2015, 159, 20-23.	2.6	92
23	Paper transistor made with covalently bonded multiwalled carbon nanotube and cellulose. Applied Physics Letters, 2009, 95, .	3.3	91
24	Large amplification of triboelectric property by allicin to develop high performance cellulosic triboelectric nanogenerator. Chemical Engineering Journal, 2020, 385, 123723.	12.7	86
25	Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydrate Polymers, 2018, 191, 65-70.	10.2	82
26	Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite. Sensors and Actuators B: Chemical, 2011, 157, 177-182.	7.8	81
27	Swelling Behavior of Polyacrylamide–Cellulose Nanocrystal Hydrogels: Swelling Kinetics, Temperature, and pH Effects. Materials, 2019, 12, 2080.	2.9	80
28	Force tracking control of a flexible gripper featuring shape memory alloy actuators. Mechatronics, 2001, 11, 677-690.	3.3	77
29	A bending electro-active paper actuator made by mixing multi-walled carbon nanotubes and cellulose. Smart Materials and Structures, 2007, 16, 1471-1476.	3.5	70
30	Cellulose–titanium dioxide–multiwalled carbon nanotube hybrid nanocomposite and its ammonia gas sensing properties at room temperature. Sensors and Actuators B: Chemical, 2012, 171-172, 1186-1191.	7.8	68
31	Porous cellulose/graphene oxide nanocomposite as flexible and renewable electrode material for supercapacitor. Synthetic Metals, 2017, 223, 94-100.	3.9	66
32	Paper Actuators Made with Cellulose and Hybrid Materials. Sensors, 2010, 10, 1473-1485.	3.8	65
33	Studies on conducting polymer electroactive paper actuators: effect of humidity and electrode thickness. Smart Materials and Structures, 2005, 14, 876-880.	3.5	60
34	A Comparative Study of Conductive Polypyrrole and Polyaniline Coatings on Electro-Active Papers. Polymer Journal, 2006, 38, 659-668.	2.7	60
35	Effect of Wet Spinning and Stretching to Enhance Mechanical Properties of Cellulose Nanofiber Filament. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 567-575.	4.9	60
36	A hybrid inchworm linear motor. Mechatronics, 2002, 12, 525-542.	3.3	59

HYUN-CHAN KIM

#	Article	IF	CITATIONS
37	Biocompatible Bacterial Cellulose Composites for Biomedical Application. Journal of Nanotechnology in Engineering and Medicine, 2010, 1, .	0.8	59
38	Preparation of cellulose-ZnO hybrid films by a wet chemical method and their characterization. Cellulose, 2011, 18, 675-680.	4.9	59
39	Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications. Sensors, 2016, 16, 1172.	3.8	59
40	Incorporation of melanin nanoparticles improves UV-shielding, mechanical and antioxidant properties of cellulose nanofiber based nanocomposite films. Materials Today Communications, 2020, 24, 100984.	1.9	59
41	New shunting parameter tuning method for piezoelectric damping based on measured electrical impedance. Smart Materials and Structures, 2000, 9, 868-877.	3.5	57
42	Self-moving cell linear motor using piezoelectric stack actuators. Smart Materials and Structures, 2005, 14, 934-940.	3.5	57
43	Enhanced optical and electrical properties of PEDOT: PSS films by the addition of MWCNT-sorbitol. Synthetic Metals, 2009, 159, 1701-1704.	3.9	57
44	Cellulose Nanofiber-Based Nanocomposite Films Reinforced with Zinc Oxide Nanorods and Grapefruit Seed Extract. Nanomaterials, 2021, 11, 877.	4.1	57
45	Flexible cellulose acetate/graphene blueprints for vibrotactile actuator. RSC Advances, 2015, 5, 34432-34438.	3.6	56
46	Cross-linking of cellulose nanofiber films with glutaraldehyde for improved mechanical properties. Materials Letters, 2019, 250, 99-102.	2.6	56
47	Tannic-Acid-Cross-Linked and TiO2-Nanoparticle-Reinforced Chitosan-Based Nanocomposite Film. Polymers, 2021, 13, 228.	4.5	56
48	Preparation and Characterization of Novel Bacterial Cellulose/Gelatin Scaffold for Tissue Regeneration Using Bacterial Cellulose Hydrogel. Journal of Nanotechnology in Engineering and Medicine, 2010, 1, .	0.8	55
49	Broadband transmission noise reduction of smart panels featuring piezoelectric shunt circuits and sound-absorbing material. Journal of the Acoustical Society of America, 2002, 112, 990-998.	1.1	54
50	Effect of solvent mixture on properties and performance of electro-active paper made with regenerated cellulose. Sensors and Actuators B: Chemical, 2008, 129, 652-658.	7.8	54
51	Biocompatible nanocomposites prepared by impregnating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Current Applied Physics, 2011, 11, 247-249.	2.4	54
52	Electroactive Hydrogels Made with Polyvinyl Alcohol/Cellulose Nanocrystals. Materials, 2018, 11, 1615.	2.9	53
53	Electroactive-paper actuator made with cellulose/NaOH/urea and sodium alginate. Cellulose, 2007, 14, 217-223.	4.9	52
54	One-step nanocellulose coating converts tissue paper into an efficient separation membrane. Cellulose, 2018, 25, 4871-4886.	4.9	51

#	Article	IF	CITATIONS
55	Preparation and characterization of hydrogels from polyvinyl alcohol and cellulose and their electroactive behavior. Soft Materials, 2017, 15, 64-72.	1.7	50
56	Effect of aligned cellulose film to the performance of electro-active paper actuator. Sensors and Actuators A: Physical, 2008, 141, 530-535.	4.1	49
57	Mechanical, electrical, piezoelectric and electro-active behavior of aligned multi-walled carbon nanotube/cellulose composites. Carbon, 2011, 49, 518-527.	10.3	49
58	New electro-active paper actuator using conducting polypyrrole: actuation behaviour in LiClO4 acetonitrile solution. Synthetic Metals, 2005, 149, 53-58.	3.9	48
59	Performance of Electro-active paper actuators with thickness variation. Sensors and Actuators A: Physical, 2007, 133, 225-230.	4.1	48
60	Strong and tough long cellulose fibers made by aligning cellulose nanofibers under magnetic and electric fields. Cellulose, 2019, 26, 5821-5829.	4.9	48
61	Electro-mechanical behavior and direct piezoelectricity of cellulose electro-active paper. Sensors and Actuators A: Physical, 2008, 147, 304-309.	4.1	47
62	Cellulose Smart Material: Possibility and Challenges. Journal of Intelligent Material Systems and Structures, 2008, 19, 417-422.	2.5	46
63	A novel approach for fabricating highly tunable and fluffy bioinspired 3D poly(vinyl alcohol) (PVA) fiber scaffolds. Nanoscale, 2017, 9, 7081-7093.	5.6	46
64	Piezoelectricity of wet drawn cellulose electro-active paper. Sensors and Actuators A: Physical, 2009, 154, 117-122.	4.1	44
65	Electromagnetic nanocomposite of bacterial cellulose using magnetite nanoclusters and polyaniline. Colloids and Surfaces B: Biointerfaces, 2013, 102, 238-242.	5.0	44
66	Green nanocomposite made with chitin and bamboo nanofibers and its mechanical, thermal and biodegradable properties for food packaging. International Journal of Biological Macromolecules, 2020, 144, 491-499.	7.5	44
67	Optimal Placement of Piezoelectric Actuators. AIAA Journal, 1997, 35, 526-533.	2.6	43
68	Renewable smart materials. Smart Materials and Structures, 2016, 25, 073001.	3.5	43
69	Nanoporous Sodium Carboxymethyl Cellulose-g-poly (Sodium Acrylate)/FeCl3 Hydrogel Beads: Synthesis and Characterization. Gels, 2020, 6, 49.	4.5	42
70	Frequency selective surface based passive wireless sensor for structural health monitoring. Smart Materials and Structures, 2013, 22, 025002.	3.5	41
71	Compliant bistable mechanism for low frequency vibration energy harvester inspired by auditory hair bundle structures. Smart Materials and Structures, 2013, 22, 014005.	3.5	40
72	Flexible cellulose and ZnO hybrid nanocomposite and its UV sensing characteristics. Science and Technology of Advanced Materials, 2017, 18, 437-446.	6.1	40

#	Article	IF	CITATIONS
73	Broadband noise reduction of piezoelectric smart panel featuring negative-capacitive-converter shunt circuit. Journal of the Acoustical Society of America, 2006, 120, 2017-2025.	1.1	39
74	Actuation of electrochemical, electro-magnetic, and electro-active actuators for carbon nanofiber and Ni nanowire reinforced polymer composites. Composites Part B: Engineering, 2008, 39, 1161-1169.	12.0	39
75	Review of microwave assisted manufacturing technologies. International Journal of Precision Engineering and Manufacturing, 2012, 13, 2263-2272.	2.2	39
76	Review of state-of-the-art sensor applications using mechanoluminescence microparticles. International Journal of Precision Engineering and Manufacturing, 2016, 17, 1237-1247.	2.2	39
77	Single-walled carbon nanotube/polyaniline coated cellulose based electro-active paper (EAPap) as hybrid actuator. Smart Materials and Structures, 2006, 15, N61-N65.	3.5	38
78	Titanium dioxide–cellulose hybrid nanocomposite and its glucose biosensor application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 844-848.	3.5	38
79	Multiwalled-carbon nanotubes and polyaniline coating on electro-active paper for bending actuator. Journal Physics D: Applied Physics, 2006, 39, 2580-2586.	2.8	37
80	Effect of chitosan and ions on actuation behavior of cellulose–chitosan laminated films as electro-active paper actuators. Cellulose, 2007, 14, 439-445.	4.9	37
81	5â€Fluorouracil encapsulated magnetic nanohydrogels for drugâ€delivery applications. Journal of Applied Polymer Science, 2016, 133, .	2.6	37
82	Characterization and electromechanical performance of cellulose–chitosan blend electro-active paper. Smart Materials and Structures, 2008, 17, 035028.	3.5	36
83	Enhanced electromechanical behavior of cellulose film by zinc oxide nanocoating and its vibration energy harvesting. Acta Materialia, 2016, 114, 1-6.	7.9	36
84	Calcinated tea and cellulose composite films and its dielectric and lead adsorption properties. Carbohydrate Polymers, 2017, 171, 183-192.	10.2	36
85	Microwave power transmission using a flexible rectenna for microwave-powered aerial vehicles. Smart Materials and Structures, 2006, 15, 1243-1248.	3.5	35
86	Cause of Slow Phase Transformation of TiO ₂ Nanorods. Journal of Physical Chemistry C, 2009, 113, 19753-19755.	3.1	35
87	A Wide Range Conductometric pH Sensor Made With Titanium Dioxide/Multiwall Carbon Nanotube/Cellulose Hybrid Nanocomposite. IEEE Sensors Journal, 2013, 13, 4157-4162.	4.7	35
88	Synthesis and characterization of iron oxide/cellulose nanocomposite film. International Journal of Biological Macromolecules, 2015, 74, 142-149.	7.5	35
89	Performance characterization of flexible dipole rectennas for smart actuator use. Smart Materials and Structures, 2006, 15, 809-815.	3.5	34
90	Fabrication of Cellulose ZnO Hybrid Nanocomposite and Its Strain Sensing Behavior. Materials, 2014, 7, 7000-7009.	2.9	34

#	Article	IF	CITATIONS
91	Chitosan Nanofiber and Cellulose Nanofiber Blended Composite Applicable for Active Food Packaging. Nanomaterials, 2020, 10, 1752.	4.1	34
92	Alignment of cellulose chains of regenerated cellulose by corona poling and its piezoelectricity. Journal of Applied Physics, 2008, 103, 083301.	2.5	33
93	Evaluation of cellulose electro-active paper made by tape casting and zone stretching methods. International Journal of Precision Engineering and Manufacturing, 2010, 11, 987-990.	2.2	33
94	A flexible paper transistor made with aligned single-walled carbon nanotube bonded cellulose composite. Current Applied Physics, 2013, 13, 897-901.	2.4	33
95	Finite element analysis for acoustic characteristics of a magnetostrictive transducer. Smart Materials and Structures, 2005, 14, 1273-1280.	3.5	32
96	Blocked force measurement of electro-active paper actuator by micro-balance. Sensors and Actuators A: Physical, 2007, 133, 401-406.	4.1	32
97	Characteristics and performance of functionalized MWNT blended cellulose electro-active paper actuator. Synthetic Metals, 2008, 158, 521-526.	3.9	32
98	Covalently bonded multi-walled carbon nanotubes-cellulose electro-active paper actuator. Sensors and Actuators A: Physical, 2009, 154, 73-78.	4.1	32
99	Synthesis and characterization of conductive silver ink for electrode printing on cellulose film. Applied Physics A: Materials Science and Processing, 2013, 112, 411-418.	2.3	32
100	Flexible and transparent strain sensor made with silver nanowire–coated cellulose. Journal of Intelligent Material Systems and Structures, 2016, 27, 1011-1018.	2.5	32
101	Elastic moduli of cellulose nanofibers isolated from various cellulose resources by using aqueous counter collision. Cellulose, 2018, 25, 4261-4268.	4.9	32
102	Adhesion properties of poly(ethylene oxide)-lignin blend for nanocellulose composites. Composites Part B: Engineering, 2019, 156, 43-50.	12.0	32
103	All-biobased transparent-wood: A new approach and its environmental-friendly packaging application. Carbohydrate Polymers, 2021, 264, 118012.	10.2	32
104	Removal of Impurities from Cellulose Films after Their Regeneration from Cellulose Dissolved in DMAc/LiCl Solvent System. Industrial & Engineering Chemistry Research, 2008, 47, 1702-1706.	3.7	31
105	Fabrication of Piezoelectric Cellulose Paper and Audio Application. Journal of Bionic Engineering, 2009, 6, 18-21.	5.0	31
106	Fabrication and testing of cellulose EAPap actuators for haptic application. Sensors and Actuators A: Physical, 2010, 164, 68-73.	4.1	31
107	The preparation, characterization and actuation behavior of polyaniline and cellulose blended electro-active paper. Smart Materials and Structures, 2010, 19, 045011.	3.5	31
108	Aligned cellulose nanofiber composite made with electrospinning of cellulose nanofiber - Polyvinyl alcohol and its vibration energy harvesting. Composites Science and Technology, 2021, 209, 108795.	7.8	31

#	Article	IF	CITATIONS
109	Electrically aligned cellulose film for electro-active paper and its piezoelectricity. Smart Materials and Structures, 2009, 18, 117001.	3.5	30
110	Poly(acrylic acid)-Poly(vinyl alcohol) hydrogels for reconfigurable lens actuators. International Journal of Precision Engineering and Manufacturing - Green Technology, 2016, 3, 375-379.	4.9	30
111	Review of Cellulose Smart Material: Biomass Conversion Process and Progress on Cellulose-Based Electroactive Paper. Journal of Renewable Materials, 2018, 6, 1-25.	2.2	29
112	Preparation of cellulose-ZnO hybrid films by a wet chemical method and their characterization. Cellulose, 2011, 18, 675-680.	4.9	29
113	Finite element-optimization methods for the active control of radiated sound from a plate structure. Smart Materials and Structures, 1995, 4, 318-326.	3.5	28
114	Multimode shunt damping of piezoelectric smart panel for noise reduction. Journal of the Acoustical Society of America, 2004, 116, 942-948.	1.1	28
115	Piezoelectric electro-active paper (EAPap) speaker. Journal of Mechanical Science and Technology, 2011, 25, 2763-2768.	1.5	28
116	Passive and active damping characteristics of smart electro-rheological composite beams. Smart Materials and Structures, 2001, 10, 724-729.	3.5	27
117	Performance test and improvement of piezoelectric torsional actuators. Smart Materials and Structures, 2001, 10, 750-757.	3.5	27
118	Micro transfer printing on cellulose electro-active paper. Smart Materials and Structures, 2006, 15, 889-892.	3.5	27
119	Magnetic field effect for cellulose nanofiber alignment. Journal of Applied Physics, 2008, 104, .	2.5	27
120	Cellulose–chitosan interpenetrating polymer network for electroâ€active paper actuator. Journal of Applied Polymer Science, 2009, 114, 288-297.	2.6	27
121	Effect of annealing temperature on the characteristics of ZnO thin films. Journal of Physics and Chemistry of Solids, 2012, 73, 1259-1263.	4.0	27
122	Designing pH-responsive and dielectric hydrogels from cellulose nanocrystals. Journal of Chemical Sciences, 2015, 127, 1119-1125.	1.5	27
123	Parameter identification of partially covered piezoelectric cantilever power scavenger based on the coupled distributed parameter solution. International Journal of Smart and Nano Materials, 2017, 8, 110-124.	4.2	27
124	Perspective and potential of smart optical materials. Smart Materials and Structures, 2017, 26, 093001.	3.5	26
125	In-plane strain of electro-active paper under electric fields. Sensors and Actuators A: Physical, 2007, 140, 225-231.	4.1	25
126	Synthesis, characterization and actuation behavior of polyaniline-coated electroactive paper actuators. Polymer International, 2007, 56, 1530-1536.	3.1	25

#	Article	IF	CITATIONS
127	Electromechanical Behavior of Room Temperature Ionic Liquid Dispersed Cellulose. Journal of Physical Chemistry C, 2009, 113, 12523-12529.	3.1	25
128	Dielectric and polarization behaviour of cellulose electro-active paper (EAPap). Journal Physics D: Applied Physics, 2009, 42, 082003.	2.8	25
129	Alignment Effect on the Piezoelectric Properties of Ultrathin Cellulose Nanofiber Films. ACS Applied Bio Materials, 2020, 3, 4329-4334.	4.6	25
130	Electro-active-paper actuator made with LiCl/cellulose films: Effect of LiCl content. Macromolecular Research, 2006, 14, 624-629.	2.4	24
131	Sonication time effect on MWNT/PANI-EB composite for hybrid electro-active paper actuator. Synthetic Metals, 2007, 157, 523-528.	3.9	24
132	Modeling elastic, viscous and creep characteristics of cellulose Electro-Active Paper. Mechanics of Materials, 2008, 40, 1001-1011.	3.2	24
133	Durability of PEDOT : PSS-pentacene Schottky diode. Journal Physics D: Applied Physics, 2008, 41, 0120	03.8	24
134	Hybrid nanocomposite based on cellulose and tin oxide: growth, structure, tensile and electrical characteristics. Science and Technology of Advanced Materials, 2011, 12, 055006.	6.1	24
135	Synthesis and characterization of cellulose acetate–calcium carbonate hybrid nanocomposite. Composites Part B: Engineering, 2012, 43, 522-525.	12.0	24
136	Optimal design of a piezoelectric smart structure for noise control. Smart Materials and Structures, 1998, 7, 801-808.	3.5	23
137	Effect of room temperature ionic liquids adsorption on electromechanical behavior of cellulose electro-active paper. Macromolecular Research, 2009, 17, 116-120.	2.4	23
138	Poly(vinyl alcohol)–lignin blended resin for celluloseâ€based composites. Journal of Applied Polymer Science, 2018, 135, 46655.	2.6	23
139	Esterified PVAâ€lignin resin by maleic acid applicable for natural fiber reinforced composites. Journal of Applied Polymer Science, 2020, 137, 48836.	2.6	23
140	A novel approach of developing sustainable cellulose coating for self-cleaning-healing fabric. Progress in Organic Coatings, 2020, 140, 105500.	3.9	23
141	Vibration Sensor Characteristics of Piezoelectric Electro-active Paper. Journal of Intelligent Material Systems and Structures, 2010, 21, 1123-1130.	2.5	22
142	Passive wireless structural health monitoring sensor made with a flexible planar dipole antenna. Smart Materials and Structures, 2012, 21, 027001.	3.5	22
143	Recent Research Progress on Lignin-Derived Resins for Natural Fiber Composite Applications. Polymers, 2021, 13, 1162.	4.5	22
144	Electroactive Paper Actuator Made with Chitosan-Cellulose Films: Effect of Acetic Acid. Macromolecular Materials and Engineering, 2007, 292, 748-753.	3.6	21

HYUN-CHAN KIM

#	Article	IF	CITATIONS
145	Effect of heat treatment on the structure, piezoelectricity and actuation behavior of a cellulose electroactive-paper actuator. Acta Materialia, 2008, 56, 1868-1875.	7.9	21
146	Noise reduction of passive and active hybrid panels. Smart Materials and Structures, 2002, 11, 940-946.	3.5	20
147	Design, Fabrication, and Evaluation of Stepper Motors Based on the Piezoelectric Torsional Actuator. IEEE/ASME Transactions on Mechatronics, 2013, 18, 1850-1854.	5.8	20
148	Steered Pull Simulation to Determine Nanomechanical Properties of Cellulose Nanofiber. Materials, 2020, 13, 710.	2.9	20
149	Finite element modeling of a piezoelectric smart structure for the cabin noise problem. Smart Materials and Structures, 1999, 8, 380-389.	3.5	19
150	An electro-active paper actuator made with lithium chloride/cellulose films: effects of glycerol content and film thickness. Smart Materials and Structures, 2007, 16, 1564-1569.	3.5	19
151	Effect of annealing temperature on the conduction mechanism for a sol–gel driven ZnO Schottky diode. Journal Physics D: Applied Physics, 2009, 42, 125110.	2.8	19
152	Effect of poly(ethylene oxide)―poly(ethylene glycol) addition on actuation behavior of cellulose electroactive paper. Journal of Applied Polymer Science, 2009, 114, 847-852.	2.6	19
153	An electro-active paper actuator made with cellulose–polypyrrole–ionic liquid nanocomposite: influence of ionic liquid concentration, type of anion and humidity. Smart Materials and Structures, 2010, 19, 105014.	3.5	19
154	Porous Tin-Oxide-Coated Regenerated Cellulose as Disposable and Low-Cost Alternative Transducer for Urea Detection. IEEE Sensors Journal, 2013, 13, 2223-2228.	4.7	19
155	Electroactive and Optically Adaptive Bionanocomposite for Reconfigurable Microlens. Journal of Physical Chemistry B, 2016, 120, 4699-4705.	2.6	19
156	High- <i>k</i> dielectric percolative nanocomposites based on multiwalled carbon nanotubes and polyvinyl chloride. Journal of Materials Chemistry C, 2018, 6, 8152-8159.	5.5	19
157	Synergistic effect of polydopamine–polyethylenimine copolymer coating on graphene oxide for EVA nanocomposites and high-performance triboelectric nanogenerators. Nanoscale Advances, 2019, 1, 2444-2453.	4.6	19
158	High-performance Esterified-Poly (vinyl alcohol)-Citric acid-Lignin resin and its application to Wet-spun nanocellulose Filament-Reinforced polymer composite. Composites Part A: Applied Science and Manufacturing, 2022, 153, 106735.	7.6	19
159	The TiO2nanoparticle effect on the performance of a conducting polymer Schottky diode. Nanotechnology, 2008, 19, 505202.	2.6	18
160	Dry Electroactive Paper Actuator Based on Cellulose/Poly(Ethylene Oxide)—Poly(Ethylene Glycol) MicroComposite. Journal of Intelligent Material Systems and Structures, 2009, 20, 1141-1146.	2.5	18
161	Influence of residual ionic liquid on the thermal stability and electromechanical behavior of cellulose regenerated from 1-ethyl-3-methylimidazolium acetate. Fibers and Polymers, 2012, 13, 289-294.	2.1	18

Morphology correlated free volume studies of multi-walled carbon nanotube plasticized poly (vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

#	Article	IF	CITATIONS
163	Micro–macro linear piezoelectric motor based on self-moving cell. Mechatronics, 2009, 19, 1134-1142.	3.3	17
164	Characterization and sensor application of cellulose electro-active paper (EAPap). Science Bulletin, 2009, 54, 2703-2707.	9.0	17
165	Transparent and semi-interpenetrating network P(vinyl alcohol)- P(Acrylic acid) hydrogels: pH responsive and electroactive application. International Journal of Smart and Nano Materials, 2017, 8, 80-94.	4.2	17
166	High-strength cellulose nanofiber/graphene oxide hybrid filament made by continuous processing and its humidity monitoring. Scientific Reports, 2021, 11, 13611.	3.3	17
167	Magnetostrictive self-moving cell linear motor. Mechatronics, 2003, 13, 739-753.	3.3	16
168	Transient analysis of delaminated smart composite structures by incorporating the Fermi–Dirac distribution function. Smart Materials and Structures, 2006, 15, 221-231.	3.5	16
169	Mechanical properties of cellulose electro-active paper under different environmental conditions. Smart Materials and Structures, 2008, 17, 015029.	3.5	16
170	Nanocoating of ionic liquid and polypyrrole for durable electro-active paper actuators working under ambient conditions. Journal Physics D: Applied Physics, 2010, 43, 205502.	2.8	16
171	Electrical and electromechanical properties of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide-blended cellulose. Ionics, 2011, 17, 41-47.	2.4	16
172	The effects of width reduction on the damping of a cantilever beam and its application in increasing the harvesting power of piezoelectric energy harvester. Smart Materials and Structures, 2015, 24, 045006.	3.5	16
173	Graphene oxide–gellan gum–sodium alginate nanocomposites: synthesis, characterization, and mechanical behavior. Composite Interfaces, 2015, 22, 249-263.	2.3	16
174	Green all-cellulose nanocomposites made with cellulose nanofibers reinforced in dissolved cellulose matrix without heat treatment. Cellulose, 2017, 24, 3301-3311.	4.9	16
175	Characteristics of flexible electrode made on cellulose by soluble polypyrrole coating. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226, 2605-2609.	2.1	15
176	Flexible and conductive ITO electrode made on cellulose film by spin-coating. Synthetic Metals, 2012, 162, 1972-1976.	3.9	15
177	Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests. Sensors, 2016, 16, 1499.	3.8	15
178	Analytical and experimental investigation of partially covered piezoelectric cantilever energy harvester. International Journal of Precision Engineering and Manufacturing, 2017, 18, 415-424.	2.2	15
179	Soft piezoelectric polymer of poly[di(ethylene glycol) adipate] plasticized poly vinyl chloride and its strain sensing. Materials Letters, 2018, 227, 276-280.	2.6	15
180	Recent progress in bioâ€based eugenol resins: From synthetic strategies to structural properties and coating applications. Journal of Applied Polymer Science, 2022, 139, 51532.	2.6	15

#	Article	IF	CITATIONS
181	Performance Evaluation of ER Shock Damper Subjected to Impulse Excitation. Journal of Intelligent Material Systems and Structures, 2002, 13, 625-628.	2.5	14
182	Blocked force measurement of an electro-active paper actuator using a cantilevered force transducer. Smart Materials and Structures, 2008, 17, 025021.	3.5	14
183	Possibility of Cellulose-Based Electro-Active Paper Energy Scavenging Transducer. Journal of Nanoscience and Nanotechnology, 2014, 14, 7458-7462.	0.9	14
184	Flexible piezoelectric vibration energy harvester using a trunk-shaped beam structure inspired by an electric fish fin. International Journal of Precision Engineering and Manufacturing, 2014, 15, 1967-1971.	2.2	14
185	Synthesis, characterization, and antibacterial property of eco-friendly Ag/cellulose nanocomposite film. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 420-426.	3.4	14
186	High Content Nanocellulose 3Dâ€Printed and Esterified Structures with Strong Interfacial Adhesion, High Mechanical Properties, and Shape Fidelity. Advanced Materials Interfaces, 2022, 9, .	3.7	14
187	Position control of a flexible gantry robot arm using smart material actuators. Journal of Field Robotics, 1999, 16, 581-595.	0.7	13
188	The effect of chitosan concentration on the electrical property of chitosan-blended cellulose electroactive paper. Smart Materials and Structures, 2009, 18, 015003.	3.5	13
189	Performance enhancement of polymer Schottky diode by doping pentacene. Thin Solid Films, 2009, 517, 6096-6099.	1.8	13
190	Effect of hydrophobic ionic liquid loading on characteristics and electromechanical performance of cellulose. International Journal of Precision Engineering and Manufacturing, 2011, 12, 47-52.	2.2	13
191	Film-type haptic actuator made with cellulose acetate layers. Journal of Intelligent Material Systems and Structures, 2014, 25, 1289-1294.	2.5	13
192	Electrode effects of a cellulose-based electro-active paper energy harvester. Smart Materials and Structures, 2014, 23, 074003.	3.5	13
193	Transparent and flexible haptic actuator based on cellulose acetate stacked membranes. International Journal of Precision Engineering and Manufacturing, 2015, 16, 1479-1485.	2.2	13
194	Preparation and characterization of Cellulose-ZnO nanolayer film by blending method. Macromolecular Research, 2015, 23, 814-818.	2.4	13
195	Simple centrifugal fractionation to reduce the size distribution of cellulose nanofibers. Scientific Reports, 2020, 10, 11744.	3.3	13
196	Modulation of interfacial interactions toward strong and tough cellulose nanofiber-based transparent thin films with antifogging feature. Carbohydrate Polymers, 2022, 278, 118974.	10.2	13
197	Effect of Li ⁺ ions on structure, properties, and actuation of cellulose electroâ€active paper actuator. Journal of Applied Polymer Science, 2008, 108, 2260-2265.	2.6	12
198	Characteristics and performance of electroactive paper actuator made with cellulose/polyurethane semiâ€interpenetrating polymer networks. Journal of Applied Polymer Science, 2008, 109, 3689-3695.	2.6	12

#	Article	IF	CITATIONS
199	Cellulose electro-active paper fabricated by facile solvent exchange pretreatment and its physical and electromechanical properties. Cellulose, 2015, 22, 927-933.	4.9	12
200	Frequencyâ€selective surfaceâ€based chipless passive RFID sensor for detecting damage location. Structural Control and Health Monitoring, 2017, 24, e2028.	4.0	12
201	Preparation of Cellulose Nanocrystal-Reinforced Physical Hydrogels for Actuator Application. Crystals, 2020, 10, 969.	2.2	12
202	Polystyrene nanocomposites reinforced with phenyl isocyanate-treated cellulose nanofibers. Functional Composites and Structures, 2020, 2, 015002.	3.4	12
203	Material characterization of ER fluids at high frequency. Journal of Sound and Vibration, 2003, 267, 57-65.	3.9	11
204	Performance test for transmitted noise reduction of smart panels using piezoelectric shunt damping. Smart Materials and Structures, 2005, 14, 587-593.	3.5	11
205	Modal-Strain-Based Damage Index of Laminated Composite Structures Using Smooth Transition of Displacements. AIAA Journal, 2007, 45, 2972-2978.	2.6	11
206	Actuator, sensor and MEMS devices based on regenerated cellulose. Composite Interfaces, 2008, 15, 679-685.	2.3	11
207	Ultrasonic wave propagation of flexible piezoelectric polymer for tactile actuator: simulation and experiment. Smart Materials and Structures, 2016, 25, 115043.	3.5	11
208	Preliminary operational aspects of microwave-powered airship drone. International Journal of Micro Air Vehicles, 2019, 11, 175682931986136.	1.3	11
209	Modeling delamination in composite structures by incorporating the Fermi–Dirac distribution function and hybrid damage indicators. Finite Elements in Analysis and Design, 2006, 42, 715-725.	3.2	10
210	Electric Field Frequency and Strength Effects on Au-Electrode Damage for an Electroactive Paper Actuator Coated with Polypyrrole. Journal of Physical Chemistry C, 2008, 112, 7001-7004.	3.1	10
211	Finite element analysis of piezoelectric underwater transducers for acoustic characteristics. Journal of Mechanical Science and Technology, 2009, 23, 452-460.	1.5	10
212	Wirelessly driven electro-active paper actuator made with cellulose–polypyrrole–ionic liquid and dipole rectenna. Smart Materials and Structures, 2010, 19, 105026.	3.5	10
213	Highly Durable, Biomimetic Electro-Active Paper Actuator Based on Cellulose Polypyrrole-Ionic Liquid (CPIL) Nanocomposite. Journal of Nanoscience and Nanotechnology, 2011, 11, 270-274.	0.9	10
214	Effects of Solvent Systems on Its Structure, Properties and Electromechanical Behavior of Cellulose Electro-Active Paper. Current Organic Chemistry, 2013, 17, 83-88.	1.6	10
215	Characteristic of Hybrid Cellulose-Amino Functionalized POSS-Silica Nanocomposite and Antimicrobial Activity. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	10
216	Fabrication and characterization of cellulose nanocrystal based transparent electroactive polyurethane. Smart Materials and Structures, 2017, 26, 085012.	3.5	10

#	Article	IF	CITATIONS
217	Performance improvement of miniaturized ZnO nanowire accelerometer fabricated by refresh hydrothermal synthesis. Royal Society Open Science, 2017, 4, 170557.	2.4	10
218	Preparation of antibacterial temperatureâ€sensitive silverâ€nanocomposite hydrogels from <i>N</i> â€isopropylacrylamide with green tea. Journal of Applied Polymer Science, 2018, 135, 45739.	2.6	10
219	Mechanical stretching effect on the actuator performance of cellulose electroactive paper. Smart Materials and Structures, 2009, 18, 055005.	3.5	9
220	Dry and durable electroâ€active paper actuator based on natural biodegradable polymer. Journal of Applied Polymer Science, 2010, 115, 2044-2049.	2.6	9
221	Effect of ionic liquid dispersion on performance of a conducting polymer based Schottky diode. Thin Solid Films, 2010, 518, 5626-5628.	1.8	9
222	The Effect of Residual Ionic Liquid for Cellulose Based Electro-Active Paper Actuator. Soft Materials, 2010, 8, 254-262.	1.7	9
223	Hybrid composite thin films composed of tin oxide nanoparticles and cellulose. Smart Materials and Structures, 2013, 22, 075011.	3.5	9
224	Fabrication Method Study of ZnO Nanocoated Cellulose Film and Its Piezoelectric Property. Materials, 2017, 10, 611.	2.9	9
225	Structural and Electrochemical Analysis of Decarburized Graphene Electrodes for Supercapacitor Applications. Crystals, 2020, 10, 1043.	2.2	9
226	Electromechanical Behavior of Green Cellulose-ZnO Hybrid Nanocomposite. Journal of Biobased Materials and Bioenergy, 2014, 8, 137-142.	0.3	9
227	Effect of Embedment of MWCNTs for Enhancement of Physical and Mechanical Performance of Medium Density Fiberboard. Nanomaterials, 2021, 11, 29.	4.1	9
228	Piezoelectric smart structures for noise reduction in a cabin. Journal of Mechanical Science and Technology, 1999, 13, 451-458.	0.4	8
229	Au micro-pattern fabrication on cellulose paper: comparison of $\hat{l}^1\!4$ -contact printing and liftoff techniques. Journal of Micromechanics and Microengineering, 2007, 17, 1415-1419.	2.6	8
230	Investigation of surface morphology of cellulose acetate micro-mould after deacetylation. Journal Physics D: Applied Physics, 2008, 41, 195403.	2.8	8
231	The effect of TiO2 nanoparticle concentration on conduction mechanism for TiO2-polymer diode. Applied Physics Letters, 2008, 93, 192113.	3.3	8
232	Electrical and Electromechanical Properties of Cellulose-Polypyrrole-Ionic Liquid Nanocomposite: Effect of Polymerization Time. IEEE Nanotechnology Magazine, 2011, 10, 445-450.	2.0	8
233	Strong deep-UV and visible luminescence from GaN nanoparticles. Applied Physics A: Materials Science and Processing, 2011, 102, 517-519.	2.3	8
234	Phase transformation comparison of TiO2 nanorods and TiO2 thin film after annealing. Electronic Materials Letters, 2012, 8, 301-304.	2.2	8

#	Article	IF	CITATIONS
235	Cellulose Electro-Active Paper: From Discovery to Technology Applications. Frontiers in Materials, 2014, 1, .	2.4	8
236	A G-Fresnel Optical Device and Image Processing Based Miniature Spectrometer for Mechanoluminescence Sensor Applications. Sensors, 2019, 19, 3528.	3.8	8
237	Polydopamine–cellulose nanofiber composite for flexible electrode material. Smart Materials and Structures, 2021, 30, 035025.	3.5	8
238	Electric field-assisted wet spinning to fabricate strong, tough, and continuous nanocellulose long fibers. Cellulose, 2022, 29, 3499-3511.	4.9	8
239	Three-Dimensional Printing of Highly Crosslinked and Concentrated Nanocellulose for Environmentally Friendly Structural Applications. ACS Applied Nano Materials, 2022, 5, 5680-5687.	5.0	8
240	High-Strength, Multifunctional, and Long Nanocellulose Hybrid Fibers Coated with Esterified Poly(vinyl alcohol)–Citric Acid–Lignin Resin. ACS Sustainable Chemistry and Engineering, 2022, 10, 10024-10033.	6.7	8
241	Finite element modeling of scattering problems involving infinite domains using drilling degrees of freedom. Computer Methods in Applied Mechanics and Engineering, 1996, 134, 57-70.	6.6	7
242	Electrical Breakdown Studies on Electro-active Paper. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14, 1125-1132.	2.9	7
243	Effect of Polyelectrolyte Nanocoating on the Performance and Durability of Cellulose Electro-Active Paper Actuator. Journal of Nanoscience and Nanotechnology, 2009, 9, 5757-5763.	0.9	7
244	Characterization of micro-scale creep deformation of an electro-active paper actuator. Smart Materials and Structures, 2009, 18, 095008.	3.5	7
245	Hygrothermal behavior of electro-active paper actuator. Journal of Mechanical Science and Technology, 2009, 23, 2285-2290.	1.5	7
246	Polymer-Based Flexible Schottky Diode Made With Pentacene–PEDOT:PSS. IEEE Nanotechnology Magazine, 2009, 8, 627-630.	2.0	7
247	Effect of covalent bonds on the mechanical properties of a multiâ€walled carbon nanotube/cellulose composite. Polymer International, 2010, 59, 1071-1076.	3.1	7
248	Sintering condition effect on the characteristics of ink-jet printed silver pattern on flexible cellulose paper. Current Applied Physics, 2012, 12, e10-e13.	2.4	7
249	Grain size and thickness effect on the performance of sol–gel based TiO2 Schottky diodes. Materials Chemistry and Physics, 2012, 132, 591-595.	4.0	7
250	Remotely powered and controlled EAPap actuator by amplitude modulated microwaves. Smart Materials and Structures, 2013, 22, 017001.	3.5	7
251	Experimental study of vibrational energy harvesting using Electro-Active paper. International Journal of Precision Engineering and Manufacturing, 2015, 16, 1187-1193.	2.2	7
252	Characterization of Electro-Active Paper Vibration Sensor by Impact Testing and Random Excitation. International Journal of Applied Mechanics, 2015, 07, 1550065.	2.2	7

#	Article	IF	CITATIONS
253	Morphology correlated investigation on mechanical and dielectric properties of plasticized poly vinyl chloride/MWCNT nanocomposites. Functional Composites and Structures, 2019, 1, 035004.	3.4	7
254	Production of Micro- and Nanofibrillated Cellulose through an Aqueous Counter Collision System Followed by Ultrasound: Effect of Mechanical Pretreatments. Journal of Natural Fibers, 2020, 17, 1099-1110.	3.1	7
255	Gas Sensing Properties of Gallium Nitride-Coated Cellulose Nanocomposite. Sensor Letters, 2012, 10, 748-753.	0.4	7
256	Piezoelectric Smart Panels for Broadband Noise Reduction. Journal of Intelligent Material Systems and Structures, 2006, 17, 685-690.	2.5	6
257	Au-pattern fabrication on a cellulose film using a polyurethane acrylate mold. Journal of Micromechanics and Microengineering, 2009, 19, 035010.	2.6	6
258	Modeling of electromechanical behavior of chitosan-blended cellulose electroactive paper (EAPap). Journal of Applied Physics, 2009, 105, 103510.	2.5	6
259	Effect of polyethylene oxide–polyethylene glycol content and humidity on performance of electroâ€active paper actuators based on cellulose/polyethylene oxide–polyethylene glycol microcomposite. Polymer Engineering and Science, 2010, 50, 1199-1204.	3.1	6
260	Soft-chemistry based fabrication of gallium nitride nanoparticles. International Journal of Precision Engineering and Manufacturing, 2011, 12, 573-576.	2.2	6
261	Fabrication and characterization of electro-active cellulose films regenerated by using 1-butyl-3-methylimidazolium chloride ionic liquid. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227, 2665-2670.	2.1	6
262	Investigation of size effect on film type haptic actuator made with cellulose acetate. Smart Materials and Structures, 2014, 23, 045016.	3.5	6
263	Multi Functional and Smart Graphene Filled Polymers as Piezoelectrics and Actuators. , 2015, , 67-90.		6
264	Optical and Electro-Active Properties of Polyacrylamide/CNC Composite Hydrogels. Journal of the Korean Society for Precision Engineering, 2017, 34, 575-580.	0.2	6
265	Electroactive papers: possibility as actuators. , 2000, , .		5
266	Material characterization of MR fluid at high frequencies. Journal of Sound and Vibration, 2005, 283, 121-133.	3.9	5
267	Noise Reduction Using Smart Panel with Shunt Circuit. AIAA Journal, 2007, 45, 79-89.	2.6	5
268	Electro-active paper for a durable biomimetic actuator. Smart Materials and Structures, 2009, 18, 024001.	3.5	5
269	Chitosan blended bacterial cellulose as a smart material for biomedical application. Proceedings of SPIE, 2009, , .	0.8	5

270 Wireless power transmission for medical applications. , 2009, , .

#	Article	lF	CITATIONS
271	Effect of Electrode Pattern on the Actuator Performance of Cellulose Electro-Active Paper. Journal of Intelligent Material Systems and Structures, 2010, 21, 401-406.	2.5	5
272	Addition of 1â€butylâ€3â€methylimidazolium bis(trifluoromethylsulfonyl) imide to improve the thermal stability of regenerated cellulose. Journal of Applied Polymer Science, 2011, 121, 750-755.	2.6	5
273	Investigation of Cellulose and Tin Oxide Hybrid Composite as a Disposable pH Sensor. Zeitschrift Fur Physikalische Chemie, 2013, 227, 419-428.	2.8	5
274	Rheology Design and Experimental Test of Roll-to-Roll Process for Electroactive Cellulose Film. International Journal of Precision Engineering and Manufacturing, 2018, 19, 1377-1384.	2.2	5
275	Structural and mechanical properties of friction stir welded Al2O3 and SiC reinforced Al 7075 alloys. Journal of Mechanical Science and Technology, 2021, 35, 1437-1444.	1.5	5
276	Environment-Friendly Zinc Oxide Nanorods-Grown Cellulose Nanofiber Nanocomposite and Its Electromechanical and UV Sensing Behaviors. Nanomaterials, 2021, 11, 1419.	4.1	5
277	FINITE ELEMENT MODELLING OF STRUCTURES INCLUDING PIEZOELECTRIC ACTIVE DEVICES. International Journal for Numerical Methods in Engineering, 1997, 40, 817-832.	2.8	5
278	Modeling of piezoelectric smart structures including absorbing materials for cabin noise problems. , 1999, , .		4
279	The Cause of Nanohole and Nanoparticle Formation on Au-Electrode after Actuation of Electro-Active Paper Actuator. Journal of Physical Chemistry C, 2008, 112, 16204-16208.	3.1	4
280	Au pattern fabrication on a cellulose paper using micro-contact printing technique: Solvent swell effect. Sensors and Actuators A: Physical, 2009, 153, 131-135.	4.1	4
281	Cellulose based soft gel like actuator for reconfigurable lens array. Proceedings of SPIE, 2014, , .	0.8	4
282	Cellulose/PDMS hybrid material for actuating lens. Proceedings of SPIE, 2015, , .	0.8	4
283	Miniaturized 3 × 3 array film vibrotactile actuator made with cellulose acetate for virtual reality simulators. Smart Materials and Structures, 2015, 24, 055018.	3.5	4
284	Fabrication and electrical properties of regenerated cellulose-loaded exfoliated graphene nanoplatelet composites. Carbon Letters, 2019, 29, 115-122.	5.9	4
285	Effect of Process Orientation on the Mechanical Behavior and Piezoelectricity of Electroactive Paper. Materials, 2020, 13, 204.	2.9	4
286	Detection of Urea and Rancidity of Milk Using Inter-Digitated Cellulose-Tin Oxide Hybrid Composite. Sensor Letters, 2014, 12, 39-43.	0.4	4
287	Flexible Patch Rectennas for Wireless Actuation of Cellulose Electro-active Paper Actuator. Journal of Electrical Engineering and Technology, 2012, 7, 954-958.	2.0	4
288	<title>Finite element modeling of active cabin noise control problems</title> . , 1997, 3039, 305.		3

#	Article	IF	CITATIONS
289	Development of a large-amplitude piezoelectric torsional actuator. , 1997, 3241, 354.		3
290	Cellulose Electroactive Paper (EAPap): The Potential for a Novel Electronic Material. Materials Research Society Symposia Proceedings, 2008, 1129, 1.	0.1	3
291	Cellulose electro-active paper: actuator, sensor and beyond. Proceedings of SPIE, 2009, , .	0.8	3
292	Haptic device development based on electro static force of cellulose electro active paper. Proceedings of SPIE, 2011, , .	0.8	3
293	Synthesis and characterization of graphene/cellulose nanocomposite. Proceedings of SPIE, 2014, , .	0.8	3
294	A tactile sensor made of graphene-cellulose nanocomposite. Proceedings of SPIE, 2015, , .	0.8	3
295	Flexible Magnetic Polymer Composite Substrate with Ba1.5Sr1.5Z Hexaferrite Particles of VHF/Low UHF Patch Antennas for UAVs and Medical Implant Devices. Materials, 2020, 13, 1021.	2.9	3
296	Nanocellulose-based paper actuators. , 2021, , 163-183.		3
297	Cellulose as a Smart Material. , 2007, , 323-343.		3
298	<title>Effects of electrical properties of papers and electrodes for electroactive paper
actuators</title> ., 2002,,.		3
299	Green Nanocomposites Made With Polyvinyl Alcohol And Cellulose Nanofibers Isolated From Recycled Paper. Journal of Renewable Materials, 2019, 7, 621-629.	2.2	3
300	Effect of Bleaching and Hot-Pressing Conditions on Mechanical Properties of Compressed Wood. Polymers, 2022, 14, 2901.	4.5	3
301	Efficacy of Drilling Degrees of Freedom in the Finite Element Modeling of P-and SV-Wave Scattering Problems. Journal of Mechanics, 2000, 16, 103-108.	1.4	2
302	<title>Smart structures for shock wave attenuation using ER inserts</title> ., 2001, 4327, 165.		2
303	<title>Pressure control of a piezoactuator-driven valve system</title> . , 2001, 4327, 324.		2
304	Extending PAD (power allocation and distribution). , 2005, 5763, 32.		2
305	Actuation behavioral studies on polyaniline-cellophane based electroactive paper. , 2005, , .		2
306	Optimal design of smart panel using admittance analysis. Journal of Mechanical Science and Technology, 2007, 21, 642-653.	1.5	2

#	Article	IF	CITATIONS
307	Observation of creep behavior of cellulose electro-active paper (EAPap) actuator. , 2009, , .		2
308	Surface acoustic wave (SAW) device using piezoelectric cellulose EAPap: fabrication and characterization. Proceedings of SPIE, 2009, , .	0.8	2
309	Direct and indirect contact effect between Al and TiO ₂ on the conduction mechanism for polymer-TiO ₂ Schottky diodes. Journal Physics D: Applied Physics, 2009, 42, 075107.	2.8	2
310	Electrical and Mechanical Characterization of Nanoscale-Layered Cellulose-Based Electro-Active Paper. Journal of Nanoscience and Nanotechnology, 2011, 11, 570-573.	0.9	2
311	Titanium dioxide-cellulose hybrid nanocomposite based conductometric glucose biosensor. Proceedings of SPIE, 2012, , .	0.8	2
312	A film-type haptic actuator for mobile devices. , 2012, , .		2
313	Electrode effect on the cellulose piezo-paper energy harvester. Proceedings of SPIE, 2013, , .	0.8	2
314	Cellulose Nanocrystals and Nanofibers for Smart Optics Materials. , 2014, , .		2
315	Transparent and flexible haptic array actuator made with cellulose acetate for tactile sensation. , 2014, , .		2
316	Fabrication and finite element analysis of vibrating parallel film actuator made with cellulose acetate for potential haptic application. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230, 2720-2727.	2.1	2
317	Cellulose/graphene oxide composite for electrode materials of flexible energy devices. , 2017, , .		2
318	Transparent and Flexible Photon Sieve Made with Cellulose Nanofiber by Micro-Nano Structure Molding. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 1165-1175.	4.9	2
319	Fabrication and Characterization of Array Tactile Actuator Based on Cellulose Acetate. Journal of the Korean Society for Precision Engineering, 2015, 32, 743-748.	0.2	2
320	Molecular Dynamics Study of Cellulose Nanofiber Alignment under an Electric Field. Polymers, 2022, 14, 1925.	4.5	2
321	<title>Optimal design of piezoelectric smart structures for active cabin noise control</title> . , 1998, ,		1
322	<title>Hybrid vibration control of laminated composite beams using piezoceramic sensor/actuator and viscoelastic material</title> ., 2001, 4331, 480.		1
323	<title>Finite element analysis of passive piezoelectric damping tuned by using electrical impedance</title> . , 2001, , .		1
324	Mechanical performance improvement of electroactive papers. , 2001, 4329, 499.		1

#	Article	IF	CITATIONS
325	<title>Precision piezoelectric stepping motor using piezoelectric torsional actuator</title> ., 2001, , .		1
326	<title>Radiation and scattering analysis of piezoelectric transducers using finite and infinite wave
envelope elements</title> . , 2002, , .		1
327	<title>Noise reduction performance of smart panels incorporating piezoelectric shunt
damping</title> . , 2002, 4698, 143.		1
328	Electrically-activated paper actuators. , 2002, 4934, 158.		1
329	Properties of Electro-Active Paper and Its Potential as a Bio-Inspired Actuator for Special Applications. , 2004, , 323.		1
330	Mechanical and electrical properties of electroactive papers and its potential application. , 2005, , .		1
331	Actuation performance of cellulose based electro-active papers. , 2005, , .		1
332	Electroactive Paper Materials Coated With Carbon Nanotubes and Conducting Polymers. , 2005, , 59.		1
333	Noise reduction using smart panel with shunt circuit. , 2006, , .		1
334	Silkworm protein: its possibility as an actuator. , 2006, 6168, 574.		1
335	Possibility of cellulose electro-active paper as smart material. , 2006, 6168, 143.		1
336	Microwave power transmission of flexible dipole rectenna for smart sensors and devices. , 2007, 6528, 382.		1
337	Micro-mold fabrication using cellulose acetate. , 2007, , .		1
338	Characterization of direct and converse piezoelectricity of cellulose based electro-active paper. , 2007, , .		1
339	Micro-contact printing method for metal micro-patterning with PUA. , 2008, , .		1
340	Fabrication and characterization of piezo-paper made with cellulose. , 2008, , .		1
341	Piezoelectric paper speaker using a regenerated cellulose film. Proceedings of SPIE, 2009, , .	0.8	1
342	Nanofiber Formation in Regenerated Cellulose by Saponification of Cellulose Acetate Film. Journal of Nanotechnology in Engineering and Medicine, 2011, 2, .	0.8	1

#	Article	IF	CITATIONS
343	Investigation of dipole antenna based sensor for passive wireless structural health monitoring. Proceedings of SPIE, 2011, , .	0.8	1
344	Preparation of fluoro derivative of cellulose acetate with (1,1,1,3,3,3)-hexafluoro-2-propanol by Mitsunobu reaction and its characterization. Carbohydrate Polymers, 2011, 84, 677-680.	10.2	1
345	Biosensor made with organic-inorganic hybrid composite: cellulose-tin oxide. Proceedings of SPIE, 2011, , .	0.8	1
346	Particle based conductive silver ink customized for ink jet printing on cellulose electro-active paper. , 2013, , .		1
347	Hybrid nanocomposites made with cellulose and ZnO nanoparticles and its biosensing application. , 2013, , .		1
348	Finite element analysis of vibration-driven electro-active paper energy harvester with experimental verification. Advances in Mechanical Engineering, 2015, 7, 168781401557123.	1.6	1
349	Simulation and experimental verification of flexible cellulose acetate haptic array actuator. Proceedings of SPIE, 2015, , .	0.8	1
350	Feasibility of transparent flexible ultrasonic haptic actuator. Proceedings of SPIE, 2016, , .	0.8	1
351	Feasibility study of cellulose nanofiber alignment by high DC magnetic field. , 2017, , .		1
352	Optical and mechanical properties of cellulose nanopaper structures. Proceedings of SPIE, 2017, , .	0.8	1
353	Miniaturized accelerometer made with ZnO nanowires. , 2017, , .		1
354	Refractive Index Change of Cellulose Nanocrystal-Based Electroactive Polyurethane by an Electric Field. Frontiers in Bioengineering and Biotechnology, 2021, 9, 606008.	4.1	1
355	Nanocellulose Bulk Material Prepared by Steam Treatment and Hot Press Molding: Material Processing and Machining Test. Crystals, 2021, 11, 853.	2.2	1
356	Fatigue Properties of Electro-Active Papers for Biomimetic Actuators. , 2005, , .		1
357	Fabrication and characterization of cellulose nanofiber/graphene oxide blended fibers. , 2018, , .		1
358	Titanium Dioxide Sol-gel Schottky Diodes and Effect of Titanium Dioxide Nanoparticle. Journal of Electrical Engineering and Technology, 2015, 10, 2343-2347.	2.0	1
359	Carbon nanotube-coated electroactive paper (EAPap) as hybrid high-displacement actuator. , 2005, , .		1
360	Atomistic molecular dynamics study to investigate thermal response of cellulose nanofibrils using		1

GROMACS., 2018, , .

HYUN-CHAN KIM

#	Article	IF	CITATIONS
361	Novel superhydrophobic cellulose coating and its multifunctional applications. , 2019, , .		1
362	<title>Position control of a flexible gantry robot arm using smart actuators</title> ., 1998, 3323, 142.		0
363	<title>Finite element modeling of active cabin noise control problems</title> . , 1998, , .		0
364	<title>Wave transmission and attenuation characteristics of EAP</title> ., 2002, 4695, 473.		0
365	Design and control issues for a hybrid linear motor working on self-moving cell concept. , 2003, , .		0
366	Paper fiber studies for electroactive papers acuators. , 2003, , .		0
367	A new electroactive paper actuator using conducting polypyrrole. , 2004, 5385, 260.		0
368	Electroactive papers based on cellulose. , 2004, , .		0
369	Temperature and humidity effects on electro-active paper actuators. , 2004, 5385, 508.		0
370	Transient analysis of delaminated smart composite structures by incorporating Fermi-Dirac distribution function. , 2005, , .		0
371	Micro-patterning on cellulose EAPap for biodegradable MEMS. , 2006, , .		0
372	Hybrid EAPap actuator coated with multiwalled carbon nanotubes. , 2006, 6170, 504.		0
373	Multiwalled carbon nanotubes mixed with EAPap material for smart materials. , 2006, , .		0
374	Multi-Mode Shunt Damping of Piezoelectric Smart Panel for Noise Reduction. Noise and Vibration Worldwide, 2006, 37, 10-17.	1.0	0
375	Electro-active paper made with aqueous cellulose solution. , 2006, 6168, 152.		0
376	In-plane strain capability of cellulose EAPap material. , 2006, 6170, 511.		0
377	Study on actuating mode shapes of electro-active paper. , 2006, 6168, 166.		0
378	Investigation of Mechanical Characteristics of EAPap Actuator under Ambient Effects. , 2006, , .		0

22

#	Article	IF	CITATIONS
379	Characterization of piezoelectric effect and mechanical properties of cellulose based electro-active paper actuator. , 2006, 6170, 434.		0
380	Fabrication of various metal electrodes on the electro-active paper actuators using soft lithography. , 2006, , .		0
381	Investigation of electromechanical coupling and visco-elastic behavior of cellulose-based electro-active paper actuator. , 2007, 6524, 178.		0
382	Alignment of multi-walled carbon nanotubes in cellulose EAPap by electric fields. , 2007, , .		0
383	An investigation into the electrical breakdown characteristics of cellulose based electro-active paper. , 2007, , .		Ο
384	Concentration effect of the Au-pattern on a cellulose paper using \hat{l} ¼-contact printing technique. , 2007, , .		0
385	Performance and characteristics of functionalized multi-walled carbon nanotubes/cellulose EAPap actuator. , 2007, , .		Ο
386	Electro-active paper for biomimetic actuator activated in low humidity condition. Proceedings of SPIE, 2007, , .	0.8	0
387	Study on the Effect of Aligned Cellulose Film to the Performance of Electro-Active Paper Actuator. , 2007, , .		Ο
388	Poly (ethylene oxide) - poly (ethylene glycol) blended cellulose electroactive paper actuator. , 2008, , .		0
389	Schottky diode made on cellulose paper with PEDOT:PSS and pentacene. Proceedings of SPIE, 2008, , .	0.8	0
390	Feasibility of e-paper made with cellulose. Proceedings of SPIE, 2008, , .	0.8	0
391	Electromechanical simulation of cellulose based biomimetic electro-active actuator. Proceedings of SPIE, 2008, , .	0.8	0
392	Cellulose Smart Material for Sensor, Actuator and MEMS Applications. , 2008, , .		0
393	Magnetic and electric field alignments of cellulose chains for electro-active paper actuator. Proceedings of SPIE, 2008, , .	0.8	Ο
394	Cellulose-chitosan blended electroactive paper actuator. Proceedings of SPIE, 2008, , .	0.8	0
395	Ionic liquids adsorbed cellulose electro active paper actuator. Proceedings of SPIE, 2009, , .	0.8	0
396	Transport mechanisms in polymer and TiO 2 Schottky diode. Proceedings of SPIE, 2009, , .	0.8	0

#	Article	IF	CITATIONS
397	Effects of annealing temperature on the performance of the Schottky diode fabricated with TiO 2 sol-gel. Proceedings of SPIE, 2009, , .	0.8	Ο
398	Covalently bonded functionalized multi-walled carbon nanotubes and cellulose for electroactive paper actuator. , 2009, , .		0
399	Study of temperature dependent polarization behavior of cellulose. Proceedings of SPIE, 2009, , .	0.8	0
400	Modeling of actuation and ion migration behavior in electro-active paper actuator. Proceedings of SPIE, 2009, , .	0.8	0
401	Piezoelectric sensor characteristics of electro-active paper. Proceedings of SPIE, 2009, , .	0.8	Ο
402	Beam vibration control using electro-active paper sensor. , 2009, , .		0
403	Multi-walled carbon nanotubes covalently bonded cellulose composite for chemical vapor sensor. , 2010, , .		Ο
404	High crystalline GaN nanoparticle and GaN thin film fabrication. Proceedings of SPIE, 2010, , .	0.8	0
405	Investigation of sodium-potassium niobate (Na 0.5 K 0.5 NbO 3) thin film fabrication for piezoelectric sensor application. , 2010, , .		Ο
406	Cellulose polypyrrole-ionic liquid (CPIL) nanocomposite for durable, biomimetic electro-active paper actuator. , 2010, , .		0
407	A voltage creep effect on actuation behavior of cellulose electro-active paper (EAPap). Proceedings of SPIE, 2010, , .	0.8	Ο
408	Thickness effect on Schottky diode characteristics of ZnO thin film. , 2010, , .		0
409	Near field effects of millimeter-wave power transmission for medical applications. Proceedings of SPIE, 2011, , .	0.8	Ο
410	Thermal effect on the I-V characteristics of TiO 2 and GaN sol-gel driven Schottky diode. , 2011, , .		0
411	Remotely driven electro-active paper actuator by modulated microwaves. , 2011, , .		0
412	Paper transistor made with regenerated cellulose and covalently bonded single-walled carbon nanotubes. , 2011, , .		0
413	Temperature dependent electrical behavior of cellulose based transistor. Proceedings of SPIE, 2011, , .	0.8	0
414	Preparation and characterization of fluorinated cellulose material. Proceedings of SPIE, 2011, , .	0.8	0

#	Article	IF	CITATIONS
415	Acetone vapor sensor made with cellulose-TiO 2 /MWCNTs hybrid nanocomposite. , 2012, , .		0
416	Investigation of coplanar strip dipole rectenna elements for microwave power transmission: simulation and experiment. , 2012, , .		0
417	Fabrication of IDT electrode onto cellulose electro-active paper by inkjet printing. Proceedings of SPIE, 2012, , .	0.8	0
418	Study on the possibility of cellulose-based electroactive paper sensor. Proceedings of SPIE, 2012, , .	0.8	0
419	Thermal effects of X-band microwaves on skin tissues. , 2012, , .		0
420	A study of characteristics of cellulose-based nano composite. Proceedings of SPIE, 2012, , .	0.8	0
421	Wireless power using magnetic resonance coupling for neural sensing applications. , 2012, , .		Ο
422	Fabrication of paper-like ZnO-cellulose hybrid nanocomposite. Proceedings of SPIE, 2012, , .	0.8	0
423	Wireless structural sensor made with frequency selective surface antenna. Proceedings of SPIE, 2012,	0.8	Ο
424	Electrical and electromechanical behaviors of ZnO-cellulose hybrid nanocomposites. , 2013, , .		0
425	Flexible paper transistor made with ZnO-cellulose hybrid nano-composite for electronic applications. , 2013, , .		Ο
426	Electro-optic Effect in Polydimethylsiloxane-Cellulose Nanocrystal Composite for Reconfigurable Lens. , 2014, , .		0
427	Paper like cellulose-ZnO hybrid nanocomposite and its photoelectrical behavior. Proceedings of SPIE, 2014, , .	0.8	Ο
428	Experimental and numerical study of cellulose-based electro-active paper energy harvester. Proceedings of SPIE, 2014, , .	0.8	0
429	Strain sensor based on cellulose ZnO hybrid nanocomposite. , 2014, , .		Ο
430	Preface for the special issue of ISGMA 2014. International Journal of Precision Engineering and Manufacturing, 2015, 16, 1227-1227.	2.2	0
431	Simulation of a coplanar microstrip dipole rectenna. International Journal of Applied Electromagnetics and Mechanics, 2015, 49, 483-490.	0.6	0
432	Enhanced electromechanical behaviors of cellulose ZnO hybrid nanocomposites. Proceedings of SPIE, 2015, , .	0.8	0

#	Article	IF	CITATIONS
433	Synthesis and characterization of iron oxide-cellulose nanocomposite films. Proceedings of SPIE, 2015, , .	0.8	0
434	Array haptic actuator for flight simulator. Proceedings of SPIE, 2015, , .	0.8	0
435	The effects of width reduction on cantilever type piezoelectric energy harvesters. , 2015, , .		0
436	Review of radio wave for power transmission in medical applications with safety. Proceedings of SPIE, 2015, , .	0.8	0
437	Cellulose nanocrystals, nanofibers, and their composites as renewable smart materials. , 2015, , .		0
438	Cellulose/polyvinyl alcohol-based hydrogels for reconfigurable lens. , 2016, , .		0
439	Cellulose nanocrystal and poly[di(ethylene glycol) adipate] blend for tunable lens. Proceedings of SPIE, 2016, , .	0.8	0
440	Synthesis and characterization of cellulose nanocrystal/graphene oxide blended films. Proceedings of SPIE, 2016, , .	0.8	0
441	UV response of cellulose ZnO hybrid nanocomposite. Proceedings of SPIE, 2016, , .	0.8	0
442	Feasibility study of ZnO nanowire made accelerometer. Proceedings of SPIE, 2016, , .	0.8	0
443	Simulation study of a high power density rectenna array for biomedical implantable devices. Proceedings of SPIE, 2016, , .	0.8	0
444	Mechanical and electrical properties of calcinated tea-based cellulose composite films. Proceedings of SPIE, 2017, , .	0.8	0
445	Al-doped cellulose ZnO hybrid nanocomposite. Materials Research Express, 2017, 4, 045001.	1.6	0
446	Thermal stress in flexible interdigital transducers with anisotropic electroactive cellulose substrates. Journal Physics D: Applied Physics, 2017, 50, 505304.	2.8	0
447	Cover Image, Volume 139, Issue 2. Journal of Applied Polymer Science, 2022, 139, 51068.	2.6	0
448	Laser Scanning Vibrometer Studies of Electro-Active Papers. , 2005, , .		0
449	Role of inherent polarization and ion transport in the actuation of cellulose based EAPap. , 2005, , .		Ο
450	Performance Characterization of Polyaniline Coated Electro-Active Paper Actuator. Journal of the Korean Society for Precision Engineering, 2013, 30, 658-664.	0.2	0

HYUN-CHAN KIM

#	Article	IF	CITATIONS
451	Inkjet Printing of Customized Silver Ink for Cellulose Electro Active Paper. Journal of the Korean Society for Precision Engineering, 2014, 31, 737-742.	0.2	0
452	Alignment of cellulose nanofibers by high-DC magnetic field. , 2018, , .		0
453	Cellulose nanocrystal based transparent electroactive polyurethane for active lens application. , 2018, , .		ο
454	Properties of micro-nanofibrillated-chitin/bamboo-cellulose nanofiber composite. , 2018, , .		0
455	Young's moduli of cellulose nanofibers measured by atomic force microscopy. , 2018, , .		Ο
456	Fabrication and characteristics of cellulose nanofiber films. , 2018, , .		0
457	Improvement of Interface Diffusion in Cu thin films using SiN/CoWB Passivation Layer. Journal of the Korean Society for Precision Engineering, 2018, 35, 1163-1168.	0.2	0
458	Molecular dynamic simulation of cellulose nanofiber to determine its nano-mechanical properties. , 2019, , .		0
459	Feasibility of renewable bulk materials processing with nanocellulose. , 2019, , .		Ο
460	Polydopamine-nanocellulose nanocomposites: physical and electrical properties for biomedical electrodes. , 2019, , .		0
461	Feasibility of PVA-lignin as resin for nanocellulose future composites. , 2019, , .		0
462	Electrospinning of cellulose nanofiber and poly(vinyl alcohol) blend: experiment and simulation. , 2019, , .		0
463	Fabrication of nanocellulose-based long and strong fiber via aligning processes of cellulose nanofibers. , 2019, , .		0
464	Thin film formation of cellulose nanofiber and its physical properties. , 2019, , .		0
465	Molecular dynamics study on cellulose nanofiber (CNF) alignment under the influence of external electric fields. , 2022, , .		0
466	Development, characterization, and properties of vanillin-based epoxy resins for natural fiber composites. , 2022, , .		0
467	Esterified lignin-based resin for cellulose-long-filament reinforced polymer composites. , 2022, , .		0
468	Fabrication and characterization of nanocomposite based on aramid nanofibers. , 2022, , .		0

27

#	Article	IF	CITATIONS
469	A study in bio-nanocomposite based on polycaprolactone reinforced by cellulose nanocrystal. , 2022, , \cdot		0
470	Chapter 26. A Comprehensive Review of Electroactive Paper Actuators. , 0, , 398-422.		0
471	3D printing of nanocellulose structures infused Epofix resin with improved mechanical properties. , 2022, , .		0