
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4595617/publications.pdf Version: 2024-02-01

Νικμίι Ρ.Ιλνιλ

#	Article	IF	CITATIONS
1	Ligand-Functionalized Nanostructures and Their Biomedical Applications. Nanostructure Science and Technology, 2022, , 445-457.	0.1	0
2	Direct Cellular Delivery of Exogenous Genetic Material and Protein via Colloidal Nano-Assemblies with Biopolymer. ACS Applied Materials & amp; Interfaces, 2022, 14, 3199-3206.	4.0	10
3	Enhanced Therapeutic Applications of Vitamin C via Nanotechnology-Based Pro-Oxidant Properties: A Review. ACS Applied Nano Materials, 2022, 5, 4583-4596.	2.4	6
4	Inhibiting Protein Aggregation by Small Molecule-Based Colloidal Nanoparticles. Accounts of Materials Research, 2022, 3, 54-66.	5.9	13
5	Cytotoxicity of ZnO nanoparticles under dark conditions <i>via</i> oxygen vacancy dependent reactive oxygen species generation. Physical Chemistry Chemical Physics, 2022, 24, 13965-13975.	1.3	15
6	Enhanced Piezocatalysis by Calcium Phosphate Nanowires via Gold Nanoparticle Conjugation. ACS Applied Materials & Interfaces, 2022, 14, 26443-26454.	4.0	18
7	Penetration and preferential binding of charged nanoparticles to mixed lipid monolayers: interplay of lipid packing and charge density. Soft Matter, 2021, 17, 1963-1974.	1.2	4
8	Compressibility of Multicomponent, Charged Model Biomembranes Tunes Permeation of Cationic Nanoparticles. Langmuir, 2021, 37, 3550-3562.	1.6	3
9	Nanoparticle Size Effects in Biomedical Applications. ACS Applied Nano Materials, 2021, 4, 6471-6496.	2.4	90
10	Generalized synthesis of biomolecule-derived and functionalized fluorescent carbon nanoparticle. Bulletin of Materials Science, 2021, 44, 1.	0.8	2
11	Chemically Designed Nanoscale Materials for Controlling Cellular Processes. Accounts of Chemical Research, 2021, 54, 2916-2927.	7.6	24
12	Phosphate-Dependent Colloidal Stability Controls Nonendocytic Cell Delivery of Arginine-Terminated Nanoparticles. Journal of Physical Chemistry B, 2021, 125, 9186-9196.	1.2	8
13	Biomedical Applications of Functional Polyaspartamide-Based Materials. ACS Applied Polymer Materials, 2021, 3, 4791-4811.	2.0	13
14	Selective capturing and fluorescence "turn on―detection of dibutyl phthalate using a molecular imprinted nanocomposite. New Journal of Chemistry, 2021, 45, 19088-19096.	1.4	4
15	Cotton Modified with Silica Nanoparticles, N,F Codoped TiO ₂ Nanoparticles, and Octadecyltrimethoxysilane for Textiles with Self-Cleaning and Visible Light-Based Cleaning Properties. ACS Applied Nano Materials, 2021, 4, 877-885.	2.4	21
16	Molecular Imprinted Poly-Cyclodextrin for Selective Removal of Dibutyl Phthalate. ACS Applied Polymer Materials, 2020, 2, 691-698.	2.0	28
17	TiO ₂ -Templated BaTiO ₃ Nanorod as a Piezocatalyst for Generating Wireless Cellular Stress. ACS Applied Materials & Interfaces, 2020, 12, 48363-48370.	4.0	31
18	Surface Chemistry- and Intracellular Trafficking-Dependent Autophagy Induction by Iron Oxide Nanoparticles. ACS Applied Bio Materials, 2020, 3, 5974-5983.	2.3	8

#	Article	IF	CITATIONS
19	Nonendocytic Cell Delivery of Quantum Dot Using Arginine-Terminated Gold Nanoparticles. Journal of Physical Chemistry B, 2020, 124, 11827-11834.	1.2	5
20	ZnSnO ₃ –hBN nanocomposite-based piezocatalyst: ultrasound assisted reactive oxygen species generation for degradation of organic pollutants. New Journal of Chemistry, 2020, 44, 9278-9287.	1.4	33
21	Lipid-Raft-Mediated Direct Cytosolic Delivery of Polymer-Coated Soft Nanoparticles. Journal of Physical Chemistry B, 2020, 124, 5323-5333.	1.2	21
22	Arginine-Terminated Nanoparticles of <10 nm Size for Direct Membrane Penetration and Protein Delivery for Straight Access to Cytosol and Nucleus. Journal of Physical Chemistry Letters, 2020, 11, 2363-2368.	2.1	26
23	Small-Molecule-Functionalized Hyperbranched Polyglycerol Dendrimers for Inhibiting Protein Aggregation. Biomacromolecules, 2020, 21, 3270-3278.	2.6	20
24	Trehalose-Conjugated, Catechin-Loaded Polylactide Nanoparticles for Improved Neuroprotection against Intracellular Polyglutamine Aggregates. Biomacromolecules, 2020, 21, 1578-1586.	2.6	25
25	Pharmacologic Vitamin C-Based Cell Therapy via Iron Oxide Nanoparticle-Induced Intracellular Fenton Reaction. ACS Applied Nano Materials, 2020, 3, 1683-1692.	2.4	17
26	TiO ₂ Nanoparticles Co-doped with Nitrogen and Fluorine as Visible-Light-Activated Antifungal Agents. ACS Applied Nano Materials, 2020, 3, 2016-2025.	2.4	58
27	Fluorescent carbon dots as intracellular imaging probes. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1617.	3.3	66
28	Riboflavin-Terminated, Multivalent Quantum Dot as Fluorescent Cell Imaging Probe. Langmuir, 2019, 35, 11380-11388.	1.6	12
29	Quercetin Encapsulated Polymer Nanoparticle for Inhibiting Intracellular Polyglutamine Aggregation. ACS Applied Bio Materials, 2019, 2, 5298-5305.	2.3	24
30	ZnSnO ₃ Nanoparticle-Based Piezocatalysts for Ultrasound-Assisted Degradation of Organic Pollutants. ACS Applied Nano Materials, 2019, 2, 1120-1128.	2.4	128
31	Selective electrochemical detection of bisphenol A using a molecularly imprinted polymer nanocomposite. New Journal of Chemistry, 2019, 43, 1536-1543.	1.4	47
32	AlEgen-Conjugated Magnetic Nanoparticles as Magnetic–Fluorescent Bioimaging Probes. ACS Applied Nano Materials, 2019, 2, 3292-3299.	2.4	18
33	Electronic, electrical and magnetic behaviours of reduced graphene-oxide functionalized with silica coated gold nanoparticles. Applied Surface Science, 2019, 483, 106-113.	3.1	25
34	Designed Polymer Micelle for Clearing Amyloid Protein Aggregates via Up-Regulated Autophagy. ACS Biomaterials Science and Engineering, 2019, 5, 390-401.	2.6	31
35	Arginine-Terminated, Chemically Designed Nanoparticle for Direct Cell Translocation. ACS Applied Bio Materials, 2019, 2, 339-348.	2.3	24
36	Inhibition of Protein Aggregation by Iron Oxide Nanoparticles Conjugated with Glutamine- and Proline-Based Osmolytes. ACS Applied Nano Materials, 2018, 1, 1094-1103.	2.4	32

#	Article	IF	CITATIONS
37	Functionalized chitosan with self-assembly induced and subcellular localization-dependent fluorescence â€~switch on' property. New Journal of Chemistry, 2018, 42, 5774-5784.	1.4	10
38	Plasmonic photocatalysis: complete degradation of bisphenol A by a gold nanoparticle–reduced graphene oxide composite under visible light. Photochemical and Photobiological Sciences, 2018, 17, 628-637.	1.6	18
39	Biomolecule-derived Fluorescent Carbon Nanoparticle as Bioimaging Probe. MRS Advances, 2018, 3, 779-788.	0.5	8
40	Nitrogen and Fluorine Codoped, Colloidal TiO ₂ Nanoparticle: Tunable Doping, Large Red-Shifted Band Edge, Visible Light Induced Photocatalysis, and Cell Death. ACS Applied Materials & Interfaces, 2018, 10, 1976-1986.	4.0	42
41	Nanoscale Heterogeneities Drive Enhanced Binding and Anomalous Diffusion of Nanoparticles in Model Biomembranes. Langmuir, 2018, 34, 1691-1699.	1.6	27
42	Colloidal Nanobioconjugate with Complementary Surface Chemistry for Cellular and Subcellular Targeting. Langmuir, 2018, 34, 13461-13471.	1.6	28
43	Galactose Multivalency Effect on the Cell Uptake Mechanism of Bioconjugated Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 25651-25660.	1.5	30
44	Antiamyloidogenic Chemical/Biochemical-Based Designed Nanoparticle as Artificial Chaperone for Efficient Inhibition of Protein Aggregation. Biomacromolecules, 2018, 19, 1721-1731.	2.6	35
45	Galactose-Functionalized, Colloidal-Fluorescent Nanoparticle from Aggregation-Induced Emission Active Molecule via Polydopamine Coating for Cancer Cell Targeting. ACS Applied Nano Materials, 2018, 1, 3531-3540.	2.4	19
46	Inhibition and Degradation of Amyloid Beta (Aβ40) Fibrillation by Designed Small Peptide: A Combined Spectroscopy, Microscopy, and Cell Toxicity Study. ACS Chemical Neuroscience, 2017, 8, 718-722.	1.7	44
47	Cysteine-based amphiphilic peptide-polymer conjugates via thiol-mediated radical polymerization: Synthesis, self-assembly, RNA polyplexation and N-terminus fluorescent labeling for cell imaging. Polymer, 2017, 112, 125-135.	1.8	13
48	Sugar-Terminated Nanoparticle Chaperones Are 10 ² –10 ⁵ Times Better Than Molecular Sugars in Inhibiting Protein Aggregation and Reducing Amyloidogenic Cytotoxicity. ACS Applied Materials & Interfaces, 2017, 9, 10554-10566.	4.0	39
49	Hyperbranched Polyglycerol Grafting on the Surface of Silica-Coated Nanoparticles for High Colloidal Stability and Low Nonspecific Interaction. ACS Sustainable Chemistry and Engineering, 2017, 5, 4879-4889.	3.2	21
50	Poly(trehalose) Nanoparticles Prevent Amyloid Aggregation and Suppress Polyglutamine Aggregation in a Huntington's Disease Model Mouse. ACS Applied Materials & Interfaces, 2017, 9, 24126-24139.	4.0	109
51	Multivalency Effect of TAT-Peptide-Functionalized Nanoparticle in Cellular Endocytosis and Subcellular Trafficking. Journal of Physical Chemistry B, 2017, 121, 2942-2951.	1.2	51
52	Quantum Dot-Based Designed Nanoprobe for Imaging Lipid Droplet. Journal of Physical Chemistry C, 2017, 121, 23727-23735.	1.5	23
53	Multivalent gold nanoparticle–peptide conjugates for targeting intracellular bacterial infections. Nanoscale, 2017, 9, 14074-14093.	2.8	60
54	Supramolecular Host–Guest Chemistry-Based Folate/Riboflavin Functionalization and Cancer Cell Labeling of Nanoparticles. ACS Omega, 2017, 2, 8948-8958.	1.6	13

#	Article	IF	CITATIONS
55	Trehalose-Functionalized Gold Nanoparticle for Inhibiting Intracellular Protein Aggregation. Langmuir, 2017, 33, 13996-14003.	1.6	41
56	Vitamin C-Conjugated Nanoparticle Protects Cells from Oxidative Stress at Low Doses but Induces Oxidative Stress and Cell Death at High Doses. ACS Applied Materials & Interfaces, 2017, 9, 41807-41817.	4.0	56
57	Efficient Inhibition of Protein Aggregation, Disintegration of Aggregates, and Lowering of Cytotoxicity by Green Tea Polyphenol-Based Self-Assembled Polymer Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 20309-20318.	4.0	101
58	Length-Controlled Synthesis of Calcium Phosphate Nanorod and Nanowire and Application in Intracellular Protein Delivery. ACS Applied Materials & Interfaces, 2016, 8, 8710-8720.	4.0	41
59	Water soluble luminescent cyclometalated platinum(II) complex — A suitable probe for bio-imaging applications. Inorganic Chemistry Communication, 2016, 67, 107-111.	1.8	23
60	Red Fluorescent Carbon Nanoparticle-Based Cell Imaging Probe. ACS Applied Materials & Interfaces, 2016, 8, 9305-9313.	4.0	93
61	Fluorescent Imaging Probe from Nanoparticle Made of AIE Molecule. Journal of Physical Chemistry C, 2016, 120, 5196-5206.	1.5	33
62	Phase Transfer and Surface Functionalization of Hydrophobic Nanoparticle using Amphiphilic Poly(amino acid). Langmuir, 2016, 32, 2798-2807.	1.6	22
63	Nanoparticle Multivalency Directed Shifting of Cellular Uptake Mechanism. Journal of Physical Chemistry C, 2016, 120, 6778-6786.	1.5	83
64	Detection and Monitoring of Amyloid Fibrillation Using a Fluorescence "Switch-On―Probe. ACS Applied Materials & Interfaces, 2015, 7, 25813-25820.	4.0	68
65	Paper-Based Microfluidic Approach for Surface-Enhanced Raman Spectroscopy and Highly Reproducible Detection of Proteins beyond Picomolar Concentration. ACS Applied Materials & Interfaces, 2015, 7, 996-1003.	4.0	44
66	Design and Synthesis of Triphenylphosphonium Functionalized Nanoparticle Probe for Mitochondria Targeting and Imaging. Journal of Physical Chemistry C, 2015, 119, 2888-2895.	1.5	61
67	Graphene-Based Carbon Nanoparticles for Bioimaging Applications. , 2015, , 57-84.		2
68	Dopamine functionalized polymeric nanoparticle for targeted drug delivery. RSC Advances, 2015, 5, 33586-33594.	1.7	34
69	Separation of Microcystin-LR by Cyclodextrin-Functionalized Magnetic Composite of Colloidal Graphene and Porous Silica. ACS Applied Materials & Interfaces, 2015, 7, 9911-9919.	4.0	37
70	Graphene oxide (GO)/reduced-GO and their composite with conducting polymer nanostructure thin films for non-volatile memory device. Microelectronic Engineering, 2015, 146, 48-52.	1.1	25
71	Effect of size and oxidation state of platinum nanoparticles on the electrocatalytic performance of graphene-nanoparticle composites. RSC Advances, 2015, 5, 85196-85201.	1.7	18
72	Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes. Physical Chemistry Chemical Physics, 2015, 17, 24238-24247.	1.3	21

#	Article	IF	CITATIONS
73	Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle. Journal of Physical Chemistry Letters, 2015, 6, 3688-3697.	2.1	76
74	β-Cyclodextrin Functionalized Magnetic Mesoporous Silica Colloid for Cholesterol Separation. ACS Applied Materials & Interfaces, 2015, 7, 1340-1347.	4.0	64
75	Dextran-Gated, Multifunctional Mesoporous Nanoparticle for Glucose-Responsive and Targeted Drug Delivery. ACS Applied Materials & Interfaces, 2014, 6, 22183-22191.	4.0	64
76	Fluorescent Amphiphilic PEGâ€Peptideâ€PEG Triblock Conjugate Micelles for Cell Imaging. Macromolecular Bioscience, 2014, 14, 929-935.	2.1	17
77	Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 102-110.	3.3	72
78	Inhibition of Amyloid Fibril Growth and Dissolution of Amyloid Fibrils by Curcumin–Gold Nanoparticles. Chemistry - A European Journal, 2014, 20, 6184-6191.	1.7	139
79	Surfactant-Free, Stable Noble Metal–Graphene Nanocomposite as High Performance Electrocatalyst. ACS Catalysis, 2014, 4, 593-599.	5.5	76
80	Folate and biotin based bifunctional quantum dots as fluorescent cell labels. RSC Advances, 2014, 4, 10434.	1.7	4
81	Vitamin B ₁ Derived Blue and Green Fluorescent Carbon Nanoparticles for Cell-Imaging Application. ACS Applied Materials & Interfaces, 2014, 6, 7672-7679.	4.0	88
82	Synthesis of silver–graphene nanocomposite and its catalytic application for the one-pot three-component coupling reaction and one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles in water. RSC Advances, 2014, 4, 10001.	1.7	99
83	Highly Colloidally Stable Hyperbranched Polyglycerol Grafted Red Fluorescent Silicon Nanoparticle as Bioimaging Probe. ACS Applied Materials & Interfaces, 2014, 6, 4301-4309.	4.0	60
84	Facile tuning of the aggregation-induced emission wavelength in a common framework of a cyclometalated iridium(<scp>iii</scp>) complex: micellar encapsulated probe in cellular imaging. Journal of Materials Chemistry C, 2014, 2, 5615-5628.	2.7	49
85	Inhibition of Amyloid Fibril Growth by Nanoparticle Coated with Histidine-Based Polymer. Journal of Physical Chemistry C, 2014, 118, 21630-21638.	1.5	67
86	Reduced Graphene Oxide-Silver Nanoparticle Composite as Visible Light Photocatalyst for Degradation of Colorless Endocrine Disruptors. ACS Applied Materials & Interfaces, 2014, 6, 20085-20092.	4.0	196
87	Carbohydrate coated, folate functionalized colloidal graphene as a nanocarrier for both hydrophobic and hydrophilic drugs. Nanoscale, 2014, 6, 2752.	2.8	75
88	Efficient and reusable graphene-γ-Fe2O3 magnetic nano-composite for selective oxidation and one-pot synthesis of 1,2,3-triazole using a green solvent. RSC Advances, 2013, 3, 18087.	1.7	14
89	Carbon Nanoparticle-based Fluorescent Bioimaging Probes. Scientific Reports, 2013, 3, 1473.	1.6	642
90	Thiolâ€Directed Synthesis of Highly Fluorescent Gold Clusters and Their Conversion into Stable Imaging Nanoprobes. Chemistry - A European Journal, 2013, 19, 943-949.	1.7	47

#	Article	IF	CITATIONS
91	Electric and Ferro-Electric Behaviour of Polymer-Coated Graphene-Oxide Thin Film. Physics Procedia, 2013, 46, 62-70.	1.2	12
92	Detection of Cellular Glutathione and Oxidized Glutathione Using Magnetic–Plasmonic Nanocomposite-Based "Turn-Off―Surface Enhanced Raman Scattering. Analytical Chemistry, 2013, 85, 9221-9228.	3.2	127
93	Grapheneâ€Based Composite with γâ€Fe ₂ O ₃ Nanoparticle for the Highâ€Performance Removal of Endocrineâ€Disrupting Compounds from Water. Chemistry - an Asian Journal, 2013, 8, 786-791.	1.7	25
94	Enhanced catalytic performance by copper nanoparticle–graphene based composite. RSC Advances, 2013, 3, 5615.	1.7	150
95	Doped semiconductor nanocrystal based fluorescent cellular imaging probes. Nanoscale, 2013, 5, 5506.	2.8	41
96	Folic Acid Functionalized Nanoprobes for Fluorescenceâ€, Darkâ€Fieldâ€, and Dualâ€Imagingâ€Based Selective Detection of Cancer Cells and Tissue. ChemPlusChem, 2013, 78, 259-267.	1.3	23
97	Silicon nanoparticle based fluorescent biological label via low temperature thermal degradation of chloroalkylsilane. Nanoscale, 2013, 5, 5732.	2.8	32
98	Synthesis of Nanobioconjugates with a Controlled Average Number of Biomolecules between 1 and 100 per Nanoparticle and Observation of Multivalency Dependent Interaction with Proteins and Cells. Langmuir, 2013, 29, 13917-13924.	1.6	32
99	Functional, mesoporous, superparamagnetic colloidal sorbents for efficient removal of toxic metals. Chemical Communications, 2012, 48, 9272.	2.2	43
100	Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal. Nanoscale, 2012, 4, 6649.	2.8	47
101	Tunable Catalytic Performance and Selectivity of a Nanoparticle–Graphene Composite through Finely Controlled Nanoparticle Loading. Chemistry - an Asian Journal, 2012, 7, 2931-2936.	1.7	19
102	Glucose/galactose/dextran-functionalized quantum dots, iron oxide and doped semiconductor nanoparticles with <100 nm hydrodynamic diameter. RSC Advances, 2012, 2, 11915.	1.7	26
103	Nanoparticle-Incorporated Functional Mesoporous Silica Colloid for Diverse Applications. European Journal of Inorganic Chemistry, 2012, 2012, 4470-4478.	1.0	13
104	Fluorescent detection of cholesterol using \hat{l}^2 -cyclodextrin functionalized graphene. Chemical Communications, 2012, 48, 7316.	2.2	124
105	Design and development of quantum dots and other nanoparticles based cellular imaging probe. Physical Chemistry Chemical Physics, 2011, 13, 385-396.	1.3	71
106	Peptide-Functionalized Colloidal Graphene via Interdigited Bilayer Coating and Fluorescence Turn-on Detection of Enzyme. ACS Applied Materials & Interfaces, 2011, 3, 3335-3341.	4.0	63
107	Gold-Nanorod-Based Hybrid Cellular Probe with Multifunctional Properties. Journal of Physical Chemistry C, 2011, 115, 19612-19620.	1.5	26
108	Polyacrylate-coated graphene-oxide and graphene solution via chemical route for various biological application. Diamond and Related Materials, 2011, 20, 449-453.	1.8	32

#	Article	IF	CITATIONS
109	Chitosanâ^'Cholesterol-Based Cellular Delivery of Anionic Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 137-144.	1.5	24
110	Highly Luminescent Mn-Doped ZnS Nanocrystals: Gram-Scale Synthesis. Journal of Physical Chemistry Letters, 2010, 1, 1454-1458.	2.1	192
111	Functionalized graphene and graphene oxide solution via polyacrylate coating. Nanoscale, 2010, 2, 2777.	2.8	71
112	Functionalized Gold Nanorod Solution via Reverse Micelle Based Polyacrylate Coating. Langmuir, 2010, 26, 7475-7481.	1.6	45
113	Surface-Ligand-Dependent Cellular Interaction, Subcellular Localization, and Cytotoxicity of Polymer-Coated Quantum Dots. Chemistry of Materials, 2010, 22, 2239-2247.	3.2	149
114	An Alternate Route to High-Quality ZnSe and Mn-Doped ZnSe Nanocrystals. Journal of Physical Chemistry Letters, 2010, 1, 485-488.	2.1	117
115	Prevention of photooxidation in blue–green emitting Cu doped ZnSe nanocrystals. Chemical Communications, 2010, 46, 2853.	2.2	94
116	Functional and Multifunctional Nanoparticles for Bioimaging and Biosensing. Langmuir, 2010, 26, 11631-11641.	1.6	295
117	Doped Semiconductor Nanocrystals and Organic Dyes: An Efficient and Greener FRET System. Journal of Physical Chemistry Letters, 2010, 1, 636-640.	2.1	50
118	Cysteine-Functionalized Polyaspartic Acid: A Polymer for Coating and Bioconjugation of Nanoparticles and Quantum Dots. Langmuir, 2010, 26, 6503-6507.	1.6	37
119	Advances in Coating Chemistry in Deriving Soluble Functional Nanoparticle. Journal of Physical Chemistry C, 2010, 114, 11009-11017.	1.5	89
120	Highly fluorescent magnetic quantum dot probe with superior colloidal stability. Nanoscale, 2010, 2, 2561.	2.8	8
121	Ligand Exchange Approach in Deriving Magneticâ [°] Fluorescent and Magneticâ [°] Plasmonic Hybrid Nanoparticle. Langmuir, 2010, 26, 4351-4356.	1.6	29
122	Ultrasensitive Electrochemical DNA Biosensors Based on the Detection of a Highly Characteristic Solidâ \in State Process. Small, 2009, 5, 1414-1417.	5.2	80
123	Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application. Journal of Physical Chemistry C, 2009, 113, 18546-18551.	1.5	1,036
124	Imidazole Based Biocompatible Polymer Coating in Deriving <25 nm Functional Nanoparticle Probe for Cellular Imaging and Detection. Journal of Physical Chemistry C, 2009, 113, 21484-21492.	1.5	27
125	Functionalized Plasmonicâ^'Fluorescent Nanoparticles for Imaging and Detection. Journal of Physical Chemistry C, 2009, 113, 18492-18498.	1.5	77
126	Surface Coating Directed Cellular Delivery of TAT-Functionalized Quantum Dots. Bioconjugate Chemistry, 2009, 20, 1752-1758.	1.8	64

#	Article	IF	CITATIONS
127	Synthesis of Functionalized Au Nanoparticles for Protein Detection. Advanced Materials, 2008, 20, 430-434.	11.1	65
128	Functionalization of Gold Nanospheres and Nanorods by Chitosan Oligosaccharide Derivatives. Advanced Materials, 2008, 20, 2068-2073.	11.1	65
129	Langmuirâ^'Blodgett Thin Films of Quantum Dots: Synthesis, Surface Modification, and Fluorescence Resonance Energy Transfer (FRET) Studies. Langmuir, 2008, 24, 8181-8186.	1.6	47
130	Synthesis of Carbohydrate-Conjugated Nanoparticles and Quantum Dots. Langmuir, 2008, 24, 6215-6219.	1.6	97
131	Synthesis of Water-Soluble and Functionalized Nanoparticles by Silica Coating. Chemistry of Materials, 2007, 19, 5074-5082.	3.2	285
132	Controlled photostability of luminescent nanocrystalline ZnO solution for selective detection of aldehydes. Chemical Communications, 2007, , 1406.	2.2	81
133	Anisotropic Metal Nanoparticles for Use as Surface-Enhanced Raman Substrates. Advanced Materials, 2007, 19, 1761-1765.	11.1	179
134	Detection of protein molecules by surface-enhanced Raman spectroscopy-based immunoassay using 2–5 nm gold nanoparticle lables. Journal of Raman Spectroscopy, 2007, 38, 1326-1331.	1.2	45
135	Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Physical Chemistry Chemical Physics, 2006, 8, 165-170.	1.3	438
136	Gram-Scale Synthesis of Soluble, Near-Monodisperse Gold Nanorods and Other Anisotropic Nanoparticles. Small, 2005, 1, 875-882.	5.2	364
137	Synthesis of Aucore–Agshelltype bimetallic nanoparticles for single molecule detection in solution by SERS method. Journal of Nanoparticle Research, 2004, 6, 53-61.	0.8	66
138	Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach. Chemistry of Materials, 2004, 16, 3931-3935.	3.2	814
139	Shape Effect in Nanoparticle Self-Assembly. Angewandte Chemie - International Edition, 2004, 43, 1536-1540.	7.2	172
140	Single-Phase and Gram-Scale Routes toward Nearly Monodisperse Au and Other Noble Metal Nanocrystals. Journal of the American Chemical Society, 2003, 125, 14280-14281.	6.6	540
141	Nanorod shape separation using surfactant assisted self-assemblyElectronic supplementary information (ESI) available: TEM of shape separated shorter nanorods mixed with some spheres and TEM of shape separated plates mixed with short nanorods and spheres. See http://www.rsc.org/suppdata/cc/b3/b303103a/. Chemical Communications. 2003 1950.	2.2	102
142	Silver coated gold nanoparticles as new surface enhanced Raman substrate at low analyte concentration. Analyst, The, 2003, 128, 954.	1.7	82
143	Anisotropic Chemical Reactivity of Gold Spheroids and Nanorods. Langmuir, 2002, 18, 922-927.	1.6	226
144	Liquid crystalline assemblies of ordered gold nanorods. Journal of Materials Chemistry, 2002, 12, 2909-2912.	6.7	191

#	Article	IF	CITATIONS
145	Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. Journal of Physical Chemistry B, 2001, 105, 4065-4067.	1.2	2,386
146	Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Advanced Materials, 2001, 13, 1389-1393.	11.1	1,610
147	Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications, 2001, , 617-618.	2.2	1,084
148	Preparation of Polystyrene- and Silica-Coated Gold Nanorods and Their Use as Templates for the Synthesis of Hollow Nanotubes. Nano Letters, 2001, 1, 601-603.	4.5	304
149	Seeding Growth for Size Control of 5â^'40 nm Diameter Gold Nanoparticles. Langmuir, 2001, 17, 6782-6786.	1.6	1,230
150	Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles. Chemistry of Materials, 2001, 13, 2313-2322.	3.2	641
151	Size Controlled Synthesis of Gold Nanoparticles using Photochemically Prepared Seed Particles. Journal of Nanoparticle Research, 2001, 3, 257-261.	0.8	251
152	Anion effect in linear silver nanoparticle aggregation as evidenced by efficient fluorescence quenching and SERS enhancement. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 131, 111-123.	2.0	59
153	Redox Catalytic Properties of Palladium Nanoparticles:Â Surfactant and Electron Donorâ^Acceptor Effects. Langmuir, 2000, 16, 2457-2463.	1.6	171
154	Growing Small Silver Particle as Redox Catalyst. Journal of Physical Chemistry B, 1999, 103, 115-121.	1.2	340
155	Redox Catalytic Property of Still-Growing and Final Palladium Particles:Â A Comparative Study. Langmuir, 1999, 15, 3458-3463.	1.6	105
156	Silver Hydrosol, Organosol, and Reverse Micelle-Stabilized Sol—A Comparative Study. Journal of Colloid and Interface Science, 1998, 202, 30-36.	5.0	42
157	Organized Media as Redox Catalysts. Langmuir, 1998, 14, 4724-4730.	1.6	112
158	Nucleophile induced dissolution of gold. Corrosion Science, 1997, 39, 981-986.	3.0	35
159	Reversible Formation and Dissolution of Silver Nanoparticles in Aqueous Surfactant Mediaâ€. Langmuir, 1997, 13, 1481-1485.	1.6	248
160	Polarity Dependent Positional Shift of Probe in a Micellar Environment. Langmuir, 1996, 12, 3114-3121.	1.6	50
161	Spectrofluorimetric determination of arsenic in water samples. Analytical Communications, 1996, 33, 315.	2.2	10
162	Determination of arsenic in aqueous samples with solvent extraction of ion associates. Analytical Proceedings, 1995, 32, 369.	0.4	10

#	Article	IF	CITATIONS
163	Spectrophotometric study of the interaction of some hydroxyanthraquinones (HAQs) with magnesium(II) in a cationic micelle. Talanta, 1994, 41, 1291-1295.	2.9	8
164	Emodin (1,3,8-trihydroxy-6-methylanthraquinone): a spectrophotometric reagent for the determination of beryllium(II), magnesium(II) and calcium(II). Analyst, The, 1993, 118, 1337.	1.7	20
165	Spectrophotometric determination of magnesium(II) with emodin (1,3,8-trihydroxy-6-methylanthraquinone). Analyst, The, 1992, 117, 791.	1.7	14
166	Spectrophotometric determination of dissolved oxygen in water by the formation of a dicyanoaurate(I) complex with gold sol. Analyst, The, 1991, 116, 321.	1.7	10
167	Water Dispersible Red Fluorescent Carbon Nanoparticles via Carbonization of Resorcinol. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	7