Laetitia Dou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4595058/publications.pdf

Version: 2024-02-01

218677 377865 3,567 37 26 34 citations h-index g-index papers 37 37 37 3969 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney International, 2004, 65, 442-451.	5.2	421
2	The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. Journal of Thrombosis and Haemostasis, 2007, 5, 1302-1308.	3.8	359
3	Endothelium structure and function in kidney health and disease. Nature Reviews Nephrology, 2019, 15, 87-108.	9.6	292
4	Elevation of circulating endothelial microparticles in patients with chronic renal failure. Journal of Thrombosis and Haemostasis, 2006, 4, 566-573.	3.8	287
5	The Cardiovascular Effect of the Uremic Solute Indole-3 Acetic Acid. Journal of the American Society of Nephrology: JASN, 2015, 26, 876-887.	6.1	239
6	Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway. Kidney International, 2013, 84, 733-744.	5.2	205
7	The Aryl Hydrocarbon Receptor-Activating Effect of Uremic Toxins from Tryptophan Metabolism: A New Concept to Understand Cardiovascular Complications of Chronic Kidney Disease. Toxins, 2014, 6, 934-949.	3.4	194
8	Vascular Incompetence in Dialysis Patientsâ€"Proteinâ€Bound Uremic Toxins and Endothelial Dysfunction. Seminars in Dialysis, 2011, 24, 327-337.	1.3	158
9	PROGRESS IN UREMIC TOXIN RESEARCH: Proteinâ€Bound Toxinsâ€"Update 2009. Seminars in Dialysis, 2009, 22, 334-339.	1.3	139
10	Transplanted Late Outgrowth Endothelial Progenitor Cells as Cell Therapy Product for Stroke. Stem Cell Reviews and Reports, 2011, 7, 208-220.	5.6	132
11	Does Uremia Cause Vascular Dysfunction. Kidney and Blood Pressure Research, 2011, 34, 284-290.	2.0	122
12	Levels of circulating endothelial progenitor cells are related to uremic toxins and vascular injury in hemodialysis patients. Journal of Thrombosis and Haemostasis, 2009, 7, 1576-1584.	3.8	94
13	P-cresol, a uremic toxin, decreases endothelial cell response to inflammatory cytokines. Kidney International, 2002, 62, 1999-2009.	5.2	88
14	P-cresol, a uremic retention solute, alters the endothelial barrier function in vitro. Thrombosis and Haemostasis, 2004, 92, 140-150.	3.4	85
15	Aryl hydrocarbon receptor is activated in patients and mice with chronic kidney disease. Kidney International, 2018, 93, 986-999.	5.2	79
16	Review on uraemic toxins III: recommendations for handling uraemic retention solutes in vitro towards a standardized approach for research on uraemia. Nephrology Dialysis Transplantation, 2007, 22, 3381-3390.	0.7	74
17	Impaired expression of glycoproteins on resting and stimulated platelets in uraemic patients. Nephrology Dialysis Transplantation, 2003, 18, 1834-1841.	0.7	73
18	Tryptophan-Derived Uremic Toxins and Thrombosis in Chronic Kidney Disease. Toxins, 2018, 10, 412.	3.4	65

#	Article	IF	CITATIONS
19	Determination of uremic solutes in biological fluids of chronic kidney disease patients by HPLC assay. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 2281-2286.	2.3	63
20	Plasma Xanthine Oxidase Activity Is Predictive of Cardiovascular Disease in Patients with Chronic Kidney Disease, Independently of Uric Acid Levels. Nephron, 2015, 131, 167-174.	1.8	60
21	Adsorption of the uremic toxin p-cresol onto hemodialysis membranes and microporous adsorbent zeolite silicalite. Journal of Biotechnology, 2006, 123, 164-173.	3.8	51
22	Guanidino Compounds as Cause of Cardiovascular Damage in Chronic Kidney Disease: An in vitro Evaluation. Blood Purification, 2010, 30, 277-287.	1.8	49
23	Protein-bound uremic retention solutes. Advances in Chronic Kidney Disease, 2003, 10, 310-320.	2.1	44
24	Mechanisms of tissue factor induction by the uremic toxin indole-3 acetic acid through aryl hydrocarbon receptor/nuclear factor-kappa B signaling pathway in human endothelial cells. Archives of Toxicology, 2019, 93, 121-136.	4.2	43
25	Endothelial Toxicity of High Glucose and its by-Products in Diabetic Kidney Disease. Toxins, 2019, 11, 578.	3.4	32
26	Circulating microparticles in renal diseases. Nephrology Dialysis Transplantation, 2008, 23, 2129-2132.	0.7	26
27	Effect of uremia and hemodialysis on soluble L-selectin and leukocyte surface CD11b and L-selectin. American Journal of Kidney Diseases, 1998, 31, 67-73.	1.9	21
28	Quantitative Analysis of Leukocyte Membrane Antigen Expression on Human Fetal and Cord Blood: Normal Values and Changes during Development. Clinical Immunology and Immunopathology, 1997, 84, 56-64.	2.0	20
29	Aryl Hydrocarbon Receptor Activation and Tissue Factor Induction by Fluid Shear Stress and Indoxyl Sulfate in Endothelial Cells. International Journal of Molecular Sciences, 2020, 21, 2392.	4.1	17
30	The harmful effect of indoxyl sulfate on neovascularization in chronic kidney disease. Kidney International, 2016, 89, 532-534.	5 . 2	13
31	Mechanisms of myostatin and activin A accumulation in chronic kidney disease. Nephrology Dialysis Transplantation, 2022, 37, 1249-1260.	0.7	11
32	Neutrophil:lymphocyte ratio correlates with the uremic toxin indoxyl sulfate and predicts the risk of death in patients on hemodialysis. Nephrology Dialysis Transplantation, 2022, 37, 2528-2537.	0.7	6
33	Reversing endothelial dysfunction with empagliflozin to improve cardiomyocyte function in cardiorenal syndrome. Kidney International, 2021, 99, 1062-1064.	5.2	4
34	CD146 at the Interface between Oxidative Stress and the Wnt Signaling Pathway in Systemic Sclerosis. Journal of Investigative Dermatology, 2022, 142, 3200-3210.e5.	0.7	1
35	Review on uraemic toxins III: recommendations for handling uraemic retention solutes in vitrotowards a standardized approach for research on uraemia. Nephrology Dialysis Transplantation, 2007, 23, 1468-1468.	0.7	0
36	Review on uraemic toxins III: recommendations for handling uraemic retention solutes in vitro-towards a standardized approach for research on uraemia. Nephrology Dialysis Transplantation, 2007, 23, 780-780.	0.7	0

Laetitia Dou

#	Article	IF	CITATIONS
37	Cell signalling / Pathophysiology. Nephrology Dialysis Transplantation, 2012, 27, ii77-ii85.	0.7	0