
Roger A Vaughan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4594783/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of the exerciseâ€inducible myokine irisin on malignant and nonâ€malignant breast epithelial cell behavior <i>in vitro</i> . International Journal of Cancer, 2015, 136, E197-202.	5.1	139
2	BCAA Metabolism and Insulin Sensitivity – Dysregulated by Metabolic Status?. Molecular Nutrition and Food Research, 2018, 62, e1700756.	3.3	112
3	Irisin, a unique non-inflammatory myokine in stimulating skeletal muscle metabolism. Journal of Physiology and Biochemistry, 2015, 71, 679-689.	3.0	57
4	Leucine treatment enhances oxidative capacity through complete carbohydrate oxidation and increased mitochondrial density in skeletal muscle cells. Amino Acids, 2013, 45, 901-911.	2.7	52
5	Effect of Branched-Chain Amino Acid Supplementation on Recovery Following Acute Eccentric Exercise. Nutrients, 2018, 10, 1389.	4.1	47
6	Ubiquinol rescues simvastatin-suppression of mitochondrial content, function and metabolism: Implications for statin-induced rhabdomyolysis. European Journal of Pharmacology, 2013, 711, 1-9.	3.5	45
7	Leucine stimulates PPARβ/δ-dependent mitochondrial biogenesis and oxidative metabolism with enhanced GLUT4 content and glucose uptake in myotubes. Biochimie, 2016, 128-129, 1-7.	2.6	39
8	Dietary stimulators of GLUT4 expression and translocation in skeletal muscle: A miniâ€review. Molecular Nutrition and Food Research, 2015, 59, 48-64.	3.3	38
9	Effects of Caffeine on Metabolism and Mitochondria Biogenesis in Rhabdomyosarcoma Cells Compared with 2,4-Dinitrophenol. Nutrition and Metabolic Insights, 2012, 5, NMI.S10233.	1.9	29
10	Leucine increases mitochondrial metabolism and lipid content without altering insulin signaling in myotubes. Biochimie, 2020, 168, 124-133.	2.6	24
11	Leucine-induced anabolic-catabolism: two sides of the same coin. Amino Acids, 2016, 48, 321-336.	2.7	23
12	Metabolic effects of physiological levels of caffeine in myotubes. Journal of Physiology and Biochemistry, 2018, 74, 35-45.	3.0	23
13	Dietary stimulators of the PGC-1 superfamily and mitochondrial biosynthesis in skeletal muscle. A mini-review. Journal of Physiology and Biochemistry, 2014, 70, 271-284.	3.0	22
14	Effect of metformin on myotube BCAA catabolism. Journal of Cellular Biochemistry, 2020, 121, 816-827.	2.6	22
15	trans-Cinnamaldehyde stimulates mitochondrial biogenesis through PGC-1α and PPARβ/δ leading to enhanced GLUT4 expression. Biochimie, 2015, 119, 45-51.	2.6	21
16	Actions of chronic physiological 3-hydroxyisobuterate treatment on mitochondrial metabolism and insulin signaling in myotubes. Nutrition Research, 2019, 66, 22-31.	2.9	17
17	Effect of valine on myotube insulin sensitivity and metabolism with and without insulin resistance. Molecular and Cellular Biochemistry, 2020, 468, 169-183.	3.1	17
18	Heat acclimation increases mitochondrial respiration capacity of C2C12 myotubes and protects against LPS-mediated energy deficit. Cell Stress and Chaperones, 2018, 23, 871-883.	2.9	12

Roger A Vaughan

#	Article	IF	CITATIONS
19	Leucine, Palmitate, or Leucine/Palmitate Cotreatment Enhances Myotube Lipid Content and Oxidative Preference. Lipids, 2018, 53, 1043-1057.	1.7	10
20	Acute βâ€Hydroxyâ€Î²â€Methyl Butyrate Suppresses Regulators of Mitochondrial Biogenesis and Lipid Oxidation While Increasing Lipid Content in Myotubes. Lipids, 2016, 51, 1127-1136.	1.7	8
21	Branchedâ€chain amino acids at supraphysiological but not physiological levels reduce myotube insulin sensitivity. Diabetes/Metabolism Research and Reviews, 2022, 38, e3490.	4.0	7
22	AICAR stimulates mitochondrial biogenesis and BCAA catabolic enzyme expression in C2C12 myotubes. Biochimie, 2022, 195, 77-85.	2.6	7
23	Excess branched-chain amino acids alter myotube metabolism and substrate preference which is worsened by concurrent insulin resistance. Endocrine, 2022, 76, 18-28.	2.3	5
24	Uncarboxylated osteocalcin decreases insulin-stimulated glucose uptake without affecting insulin signaling and regulators of mitochondrial biogenesis in myotubes. Journal of Physiology and Biochemistry, 2020, 76, 169-178.	3.0	3
25	Comparing the effects of palmitate, insulin, and palmitateâ€insulin coâ€treatment on myotube metabolism and insulin resistance. Lipids, 2021, 56, 563-578.	1.7	1
26	Excess glutamine does not alter myotube metabolism or insulin sensitivity. Amino Acids, 2022, , .	2.7	0