
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4593517/publications.pdf Version: 2024-02-01

HEIDI M SOSIK

#	Article	IF	CITATIONS
1	Ephemeral Surface Chlorophyll Enhancement at the New England Shelf Break Driven by Ekman Restratification. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	6
2	Machine learning techniques to characterize functional traits of plankton from image data. Limnology and Oceanography, 2022, 67, 1647-1669.	3.1	28
3	Satellite detection of dinoflagellate blooms off California by UV reflectance ratios. Elementa, 2021, 9,	3.2	18
4	A Regional, Early Spring Bloom of <i>Phaeocystis pouchetii</i> on the New England Continental Shelf. Journal of Geophysical Research: Oceans, 2021, 126, .	2.6	10
5	Twilight Zone Observation Network: A Distributed Observation Network for Sustained, Real-Time Interrogation of the Ocean's Twilight Zone. Marine Technology Society Journal, 2021, 55, 92-93.	0.4	2
6	Diatom Hotspots Driven by Western Boundary Current Instability. Geophysical Research Letters, 2021, 48, e2020GL091943.	4.0	19
7	Seasonal environmental variability drives microdiversity within a coastal Synechococcus population. Environmental Microbiology, 2021, 23, 4689-4705.	3.8	6
8	Gaussian-Dirichlet Random Fields for Inference over High Dimensional Categorical Observations. , 2020, , .		1
9	Dynamics and functional diversity of the smallest phytoplankton on the Northeast US Shelf. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12215-12221.	7.1	16
10	Seasons of <i>Syn</i> . Limnology and Oceanography, 2020, 65, 1085-1102.	3.1	15
11	Ocean Time Series Observations of Changing Marine Ecosystems: An Era of Integration, Synthesis, and Societal Applications. Frontiers in Marine Science, 2019, 6, .	2.5	50
12	An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors, 2019, 19, 4285.	3.8	239
13	ILTER – The International Long-Term Ecological Research Network as a Platform for Global Coastal and Ocean Observation. Frontiers in Marine Science, 2019, 6, .	2.5	31
14	Automatic plankton quantification using deep features. Journal of Plankton Research, 2019, 41, 449-463.	1.8	45
15	Globally Consistent Quantitative Observations of Planktonic Ecosystems. Frontiers in Marine Science, 2019, 6, .	2.5	234
16	Phytoplankton light absorption in the deep chlorophyll maximum layer of the Black Sea. European Journal of Remote Sensing, 2019, 52, 123-136.	3.5	15
17	A compilation of global bio-optical in situ data for ocean-colour satellite applications – version two. Earth System Science Data, 2019, 11, 1037-1068.	9.9	43
18	Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems. Ecological Applications, 2018, 28, 749-760.	3.8	116

#	Article	IF	CITATIONS
19	Integrated Observations and Informatics Improve Understanding of Changing Marine Ecosystems. Frontiers in Marine Science, 2018, 5, .	2.5	27
20	Resonance control of acoustic focusing systems through an environmental reference table and impedance spectroscopy. PLoS ONE, 2018, 13, e0207532.	2.5	6
21	Bio-optical discrimination of diatoms from other phytoplankton in the surface ocean: Evaluation and refinement of a model for the Northwest Atlantic. Remote Sensing of Environment, 2018, 217, 126-143.	11.0	18
22	A fluorescenceâ€activated cell sorting subsystem for the Imaging FlowCytobot. Limnology and Oceanography: Methods, 2017, 15, 94-102.	2.0	16
23	Mesoscale variability in intact and ghost colonies of Phaeocystis antarctica in the Ross Sea: Distribution and abundance. Journal of Marine Systems, 2017, 166, 97-107.	2.1	31
24	Imaging FlowCytobot modified for high throughput by inâ€line acoustic focusing of sample particles. Limnology and Oceanography: Methods, 2017, 15, 867-874.	2.0	25
25	Phytoplankton hotspot prediction with an unsupervised spatial community model. , 2017, , .		1
26	Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science, 2016, 354, 326-329.	12.6	80
27	Diversity of Synechococcus at the Martha's Vineyard Coastal Observatory: Insights from Culture Isolations, Clone Libraries, and Flow Cytometry. Microbial Ecology, 2016, 71, 276-289.	2.8	32
28	Microzooplankton community structure investigated with imaging flow cytometry and automated live-cell staining. Marine Ecology - Progress Series, 2016, 550, 65-81.	1.9	16
29	A compilation of global bio-optical in situ data for ocean-colour satellite applications. Earth System Science Data, 2016, 8, 235-252.	9.9	56
30	Rapid growth and concerted sexual transitions by a bloom of the harmful dinoflagellate <i>Alexandrium fundyense</i> (Dinophyceae). Limnology and Oceanography, 2015, 60, 2059-2078.	3.1	49
31	Inversion of spectral absorption coefficients to infer phytoplankton size classes, chlorophyll concentration, and detrital matter. Applied Optics, 2015, 54, 5805.	2.1	28
32	Sixty Years of Sverdrup: A Retrospective of Progress in the Study of Phytoplankton Blooms. Oceanography, 2014, 27, 222-235.	1.0	47
33	A Framework for a Marine Biodiversity Observing Network Within Changing Continental Shelf Seascapes. Oceanography, 2014, 27, 18-23.	1.0	43
34	The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing. PLoS Biology, 2014, 12, e1001889.	5.6	885
35	Diel size distributions reveal seasonal growth dynamics of a coastal phytoplankter. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9852-9857.	7.1	58
36	Phytoplankton assemblage structure in and around a massive under-ice bloom in the Chukchi Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 105, 30-41.	1.4	57

#	Article	IF	CITATIONS
37	Phytoplankton blooms beneath the sea ice in the Chukchi sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 105, 1-16.	1.4	187
38	Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 103, 185-198.	1.4	27
39	Parasitic infection of the diatom Guinardia delicatula, a recurrent and ecologically important phenomenon on the New England Shelf. Marine Ecology - Progress Series, 2014, 503, 1-10.	1.9	72
40	Envisioning a Marine Biodiversity Observation Network. BioScience, 2013, 63, 350-361.	4.9	96
41	Continuous automated imaging-in-flow cytometry for detection and early warning of Karenia brevis blooms in the Gulf of Mexico. Environmental Science and Pollution Research, 2013, 20, 6896-6902.	5.3	66
42	Taxonomic Classification of Phytoplankton with Multivariate Optical Computing, Part III: Demonstration. Applied Spectroscopy, 2013, 67, 640-647.	2.2	12
43	Diatoms favor their younger daughters. Limnology and Oceanography, 2012, 57, 1572-1578.	3.1	37
44	Distance maps to estimate cell volume from twoâ€dimensional plankton images. Limnology and Oceanography: Methods, 2012, 10, 278-288.	2.0	60
45	Massive Phytoplankton Blooms Under Arctic Sea Ice. Science, 2012, 336, 1408-1408.	12.6	606
46	PHYLOGENETIC ANALYSIS OF BRACHIDINIUM CAPITATUM (DINOPHYCEAE) FROM THE GULF OF MEXICO INDICATES MEMBERSHIP IN THE KARENIACEAE1. Journal of Phycology, 2011, 47, 366-374.	2.3	23
47	FIRST HARMFUL DINOPHYSIS (DINOPHYCEAE, DINOPHYSIALES) BLOOM IN THE U.S. IS REVEALED BY AUTOMATED IMAGING FLOW CYTOMETRY1. Journal of Phycology, 2010, 46, 66-75.	2.3	151
48	Flow Cytometry in Phytoplankton Research. , 2010, , 171-185.		30
49	Seasonal and interannual correlations between right-whale distribution and calving success and chlorophyll concentrations in the Gulf of Maine, USA. Marine Ecology - Progress Series, 2009, 394, 289-302.	1.9	25
50	Automated taxonomic classification of phytoplankton sampled with imagingâ€inâ€flow cytometry. Limnology and Oceanography: Methods, 2007, 5, 204-216.	2.0	341
51	A submersible imagingâ€inâ€flow instrument to analyze nanoâ€and microplankton: Imaging FlowCytobot. Limnology and Oceanography: Methods, 2007, 5, 195-203.	2.0	322
52	New Approaches and Technologies for Observing Harmful Algal Blooms. Oceanography, 2005, 18, 210-227.	1.0	76
53	Analysis of apparent optical properties and ocean color models using measurements of seawater constituents in New England continental shelf surface waters. Journal of Geophysical Research, 2004, 109, .	3.3	18
54	Feature-based classification of optical water types in the Northwest Atlantic based on satellite ocean color data. Journal of Geophysical Research, 2003, 108, .	3.3	30

#	Article	IF	CITATIONS
55	Flow cytometric determination of size and complex refractive index for marine particles: comparison with independent and bulk estimates. Applied Optics, 2003, 42, 526.	2.1	78
56	An automated submersible flow cytometer for analyzing pico- and nanophytoplankton: FlowCytobot. Deep-Sea Research Part I: Oceanographic Research Papers, 2003, 50, 301-315.	1.4	116
57	Primary productivity and its regulation in the Pacific Sector of the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50, 533-558.	1.4	89
58	Cryptic coloration and mirrored sides as camouflage strategies in nearâ€surface pelagic habitats: Implications for foraging and predator avoidance. Limnology and Oceanography, 2003, 48, 1277-1288.	3.1	54
59	Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters. Limnology and Oceanography, 2003, 48, 2377-2391.	3.1	51
60	Growth rates of coastal phytoplankton from timeâ€series measurements with a submersible flow cytometer. Limnology and Oceanography, 2003, 48, 1756-1765.	3.1	85
61	Phytoplankton and iron limitation of photosynthetic efficiency in the Southern Ocean during late summer. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49, 1195-1216.	1.4	63
62	BIOMAPER-II: an integrated instrument platform for coupled biological and physical measurements in coastal and oceanic regimes. IEEE Journal of Oceanic Engineering, 2002, 27, 700-716.	3.8	47
63	DIEL VARIATIONS IN OPTICAL PROPERTIES OF MICROMONAS PUSILLA (PRASINOPHYCEAE)1. Journal of Phycology, 2002, 38, 1132-1142.	2.3	83
64	Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring. Journal of Geophysical Research, 2001, 106, 9455-9472.	3.3	44
65	Effects of iron enrichment on phytoplankton in the Southern Ocean during late summer: active fluorescence and flow cytometric analyses. Deep-Sea Research Part II: Topical Studies in Oceanography, 2000, 47, 3181-3200.	1.4	91
66	Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea. , 1999, 37, 1-13.		25
67	<title>Pump-during-probe fluorometry of phytoplankton: group-specific photosynthetic characteristics from individual cell analysis</title> . , 1997, 2963, 840.		2
68	Phytoplankton photosynethetic characteristics from fluorescence induction assays of individual cells. Limnology and Oceanography, 1996, 41, 1253-1263.	3.1	49
69	Light absorption by phytoplankton, photosynthetic pigments and detritus in the California Current System. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42, 1717-1748.	1.4	111
70	EFFECTS OF TEMPERATURE ON GROWTH, LIGHT ABSORPTION, AND QUANTUM YIELD IN DUNALIELLA TERTIOLECTA (CHLOROPHYCEAE)1. Journal of Phycology, 1994, 30, 833-840.	2.3	56
71	Absorption, fluorescence, and quantum yield for growth in nitrogen-limited Dunaliella tertiolecta. Limnology and Oceanography, 1991, 36, 910-921.	3.1	85
72	Chlorophyll fluorescence from single cells: Interpretation of flow cytometric signals. Limnology and Oceanography, 1989, 34, 1749-1761.	3.1	93