Tebello Nyokong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4593385/publications.pdf

Version: 2024-02-01

901 papers

25,873 citations

72 h-index 22832 112 g-index

925 all docs 925 docs citations

925 times ranked 13490 citing authors

#	Article	IF	CITATIONS
1	Photophysical and photochemical studies of zinc(ii) phthalocyanine derivatives—effects of substituents and solvents. New Journal of Chemistry, 2004, 28, 822-827.	2.8	674
2	Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coordination Chemistry Reviews, 2007, 251, 1707-1722.	18.8	646
3	Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coordination Chemistry Reviews, 2010, 254, 2755-2791.	18.8	502
4	Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. Journal of Molecular Structure, 2003, 650, 131-140.	3.6	447
5	Synthetic pathways to water-soluble phthalocyanines and close analogs. Coordination Chemistry Reviews, 2010, 254, 2792-2847.	18.8	371
6	Photochemical studies of tetra-2,3-pyridinoporphyrazines. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 140, 215-222.	3.9	261
7	Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 173, 211-220.	3.9	243
8	Like a Bolt from the Blue: Phthalocyanines in Biomedical Optics. Molecules, 2012, 17, 98-144.	3.8	207
9	The interaction of melatonin and its precursors with aluminium, cadmium, copper, iron, lead, and zinc: An adsorptive voltammetric study. Journal of Pineal Research, 1998, 24, 15-21.	7.4	183
10	Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines. Dalton Transactions, 2007, , 3782.	3.3	180
11	Silicon octaphenoxyphthalocyanines: photostability and singlet oxygen quantum yields. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 140, 117-125.	3.9	177
12	Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer. Talanta, 2005, 67, 162-168.	5.5	174
13	Analysis of the absorption and magnetic circular dichroism spectra of zinc phthalocyanine and the .pication-radical species [ZnPc(1-)].cntdot.+. Inorganic Chemistry, 1987, 26, 1087-1095.	4.0	164
14	Electrocatalysis of asulam on cobalt phthalocyanine modified multi-walled carbon nanotubes immobilized on a basal plane pyrolytic graphite electrode. Electrochimica Acta, 2006, 52, 114-122.	5.2	153
15	Phthalocyanine .pication-radical species: photochemical and electrochemical preparation of [ZnPc(-1).+ in solution. Inorganic Chemistry, 1987, 26, 548-553.	4.0	150
16	Effects of axial ligands on the photophysical properties of silicon octaphenoxyphthalocyanine. Journal of Porphyrins and Phthalocyanines, 2002, 06, 373-376.	0.8	150
17	Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives. Journal of Molecular Structure, 2004, 689, 89-97.	3.6	150
18	Syntheses and photochemical properties of octasubstituted phthalocyaninato zinc complexes. Journal of Porphyrins and Phthalocyanines, 2001, 05, 782-792.	0.8	133

#	Article	IF	CITATIONS
19	Generation of Singlet Oxygen via the Composites of Water-Soluble Thiol-Capped CdTe Quantum DotsSulfonated Aluminum Phthalocyanines. Journal of Physical Chemistry B, 2008, 112, 4465-4469.	2.6	130
20	Metallophthalocyanine catalysed electroreduction of nitrate and nitrite ions in alkaline media. Journal of Applied Electrochemistry, 1997, 27, 975-981.	2.9	125
21	Photosensitized transformation of 4-chlorophenol in the presence of aggregated and non-aggregated metallophthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 139, 217-224.	3.9	125
22	Synthesis, spectral and electrochemical characterization of mercaptopyrimidine-substituted cobalt, manganese and Zn (II) phthalocyanine complexes. Electrochimica Acta, 2005, 50, 3296-3304.	5.2	123
23	Electrocatalytic behavior of substituted cobalt phthalocyanines towards the oxidation of cysteine. Journal of Electroanalytical Chemistry, 2000, 492, 120-127.	3.8	122
24	Carbon Nanotubes, Phthalocyanines and Porphyrins: Attractive Hybrid Materials for Electrocatalysis and Electroanalysis. Journal of Nanoscience and Nanotechnology, 2009, 9, 2201-2214.	0.9	122
25	Characterization of amine-functionalized single-walled carbon nanotube-low symmetry phthalocyanine conjugates. Carbon, 2010, 48, 2831-2838.	10.3	122
26	Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols. Physical Chemistry Chemical Physics, 2007, 9, 3383.	2.8	120
27	Synthesis of phthalocyanine conjugates with gold nanoparticles and liposomes for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2012, 107, 35-44.	3.8	119
28	Simultaneous voltammetric determination of dopamine and serotonin on carbon paste electrodes modified with iron(II) phthalocyanine complexes. Analytica Chimica Acta, 2001, 434, 9-21.	5.4	118
29	Interaction of water-soluble thiol capped CdTe quantum dots and bovine serum albumin. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 7-12.	3.9	114
30	The renaissance in optical spectroscopy of phthalocyanines and other tetraazaporphyrins. Journal of Porphyrins and Phthalocyanines, 2004, 08, 1083-1090.	0.8	113
31	Adsorption of 4-nitrophenol onto Amberlite \hat{A}^{\otimes} IRA-900 modified with metallophthalocyanines. Journal of Hazardous Materials, 2008, 152, 293-301.	12.4	113
32	Synthesis and electrochemical properties of purple manganese(III) and red titanium(IV) phthalocyanine complexes octa-substituted at non-peripheral positions with pentylthio groups. Polyhedron, 2007, 26, 5355-5364.	2.2	112
33	Synthesis, electrochemical and photochemical properties of unsymmetrically substituted zinc phthalocyanine complexes. Polyhedron, 2002, 21, 2463-2472.	2.2	108
34	Synthesis, photophysical and photochemical properties of aryloxy tetra-substituted gallium and indium phthalocyanine derivatives. Tetrahedron, 2007, 63, 1385-1394.	1.9	108
35	Photoinduced energy transfer between water-soluble CdTe quantum dots and aluminium tetrasulfonated phthalocyanine. New Journal of Chemistry, 2008, 32, 290-296.	2.8	107
36	Electronic Spectral and Electrochemical Behavior of Near Infrared Absorbing Metallophthalocyanines. Structure and Bonding, 2010, , 45-87.	1.0	105

#	Article	IF	CITATIONS
37	Tetracarboxylic acid cobalt phthalocyanine SAM on gold: Potential applications as amperometric sensor for H2O2 and fabrication of glucose biosensor. Electrochimica Acta, 2006, 52, 177-186.	5.2	104
38	Synthesis and solvent effects on the electronic absorption and fluorescence spectral properties of substituted zinc phthalocyanines. Polyhedron, 2007, 26, 2767-2776.	2.2	102
39	Optically active BODIPYs. Coordination Chemistry Reviews, 2016, 318, 1-15.	18.8	102
40	Electrochemistry and spectroscopy of magnesium phthalocyanine. Analysis of the absorption and magnetic circular dichroism spectra. Inorganic Chemistry, 1988, 27, 2724-2732.	4.0	98
41	Photophysicochemical and fluorescence quenching studies of benzyloxyphenoxy-substituted zinc phthalocyanines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 69, 1170-1177.	3.9	98
42	Organosilicon compounds as fluorescent chemosensors for fluoride anion recognition. Coordination Chemistry Reviews, 2015, 285, 24-51.	18.8	97
43	Comparative photosensitised transformation of polychlorophenols with different sulphonated metallophthalocyanine complexes in aqueous medium. Journal of Molecular Catalysis A, 2001, 176, 29-40.	4.8	96
44	Synthesis and electrochemical characterisation of benzylmercapto and dodecylmercapto tetra substituted cobalt, iron, and zinc phthalocyanines complexes. Electrochimica Acta, 2006, 51, 4379-4387.	5.2	96
45	Novel amperometric glucose biosensor based on an ether-linked cobalt(II) phthalocyanine–cobalt(II) tetraphenylporphyrin pentamer as a redox mediator. Electrochimica Acta, 2006, 51, 5131-5136.	5.2	95
46	Electrochemical properties of benzylmercapto and dodecylmercapto tetra substituted nickel phthalocyanine complexes: Electrocatalytic oxidation of nitrite. Electrochimica Acta, 2006, 51, 6470-6478.	5.2	95
47	The synthesis, fluorescence behaviour and singlet oxygen studies of new water-soluble cationic gallium(III) phthalocyanines. Inorganic Chemistry Communication, 2007, 10, 332-338.	3.9	95
48	Iron perchlorophthalocyanine and tetrasulfophthalocyanine catalyzed oxidation of cyclohexane using hydrogen peroxide, chloroperoxybenzoic acid and tert-butylhydroperoxide as oxidants. Journal of Molecular Catalysis A, 2002, 179, 113-123.	4.8	94
49	Electrooxidation of hydrazine catalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc. Electrochimica Acta, 2008, 53, 8051-8057.	5.2	94
50	Comparative electrochemistry and electrocatalytic activities of cobalt, iron and manganese phthalocyanine complexes axially co-ordinated to mercaptopyridine self-assembled monolayer at gold electrodes. Electrochimica Acta, 2006, 51, 2669-2677.	5.2	93
51	Synthesis, spectral and electrochemical properties of a new family of pyrrole substituted cobalt, iron, manganese, nickel and zinc phthalocyanine complexes. Journal of Porphyrins and Phthalocyanines, 2003, 07, 508-520.	0.8	91
52	Catalytic activity of iron and cobalt phthalocyanine complexes towards the oxidation of cyclohexene using tert-butylhydroperoxide and chloroperoxybenzoic acid. Journal of Molecular Catalysis A, 2004, 209, 51-57.	4.8	91
53	Nonlinear optical properties of natural laccaic acid dye studied using Z-scan technique. Optical Materials, 2015, 46, 270-275.	3.6	91
54	Long-term stability of a gold electrode modified with a self-assembled monolayer of octabutylthiophthalocyaninato-cobalt(II) towards l-cysteine detection. Electrochemistry Communications, 2001, 3, 529-534.	4.7	89

#	Article	IF	CITATIONS
55	Self-Assembled Monolayers of Cobalt and Iron Phthalocyanine Complexes on Gold Electrodes: Comparative Surface Electrochemistry and Electrocatalytic Interaction with Thiols and Thiocyanate. Electroanalysis, 2003, 15, 1762-1770.	2.9	88
56	Photochemical and Photophysical Properties of Metallophthalocyanines. Handbook of Porphyrin Science, 2010, , 247-357.	0.8	88
57	Water-soluble quaternized mercaptopyridine-substituted zinc-phthalocyanines: Synthesis, photophysical, photochemical and bovine serum albumin binding properties. Dyes and Pigments, 2011, 91, 153-163.	3.7	88
58	Insights into the surface and redox properties of single-walled carbon nanotube—cobalt(II) tetra-aminophthalocyanine self-assembled on gold electrode. Electrochimica Acta, 2007, 52, 4132-4143.	5.2	87
59	Methodological Survey of Simplified TD-DFT Methods for Fast and Accurate Interpretation of UV–Vis–NIR Spectra of Phthalocyanines. ACS Omega, 2019, 4, 7265-7284.	3.5	86
60	Electrocatalytic behaviour of carbon paste electrode modified with iron(II) phthalocyanine (FePc) nanoparticles towards the detection of amitrole. Talanta, 2006, 69, 1136-1142.	5.5	85
61	Photocatalysis of 4-nitrophenol using zinc phthalocyanine complexes. Journal of Molecular Catalysis A, 2007, 261, 36-42.	4.8	84
62	Conjugates of low-symmetry Ge, Sn and Ti carboxy phthalocyanines with glutathione caped gold nanoparticles: An investigation of photophysical behaviour. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 223, 124-131.	3.9	84
63	Synthesis, photophysical and photochemical properties of tetra- and octa-substituted gallium and indium phthalocyanines. Polyhedron, 2007, 26, 3323-3335.	2.2	82
64	Electrocatalytic Detection of Amitrole on the Multi-Walled Carbon Nanotube – Iron (II) tetra-aminophthalocyanine Platform. Sensors, 2008, 8, 5096-5105.	3.8	82
65	Photochemistry, photophysics and nonlinear optical parameters of phenoxy and tert-butylphenoxy substituted indium(III) phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 192, 179-187.	3.9	81
66	Desired properties of new phthalocyanines for photodynamic therapy. Pure and Applied Chemistry, 2011, 83, 1763-1779.	1.9	81
67	Voltammetric characterization of the self-assembled monolayer (SAM) of octabutylthiophthalocyaninatoiron(II): a potential electrochemical sensor. Electrochimica Acta, 2002, 47, 4035-4043.	5.2	80
68	Selective adsorption of PVP on the surface of silver nanoparticles: A molecular dynamics study. Journal of Molecular Structure, 2011, 1004, 131-137.	3.6	78
69	Synthesis, electrochemical and electrocatalytic behaviour of thiophene-appended cobalt, manganese and zinc phthalocyanine complexes. Electrochimica Acta, 2005, 50, 5427-5434.	5.2	77
70	Synthesis, photophysical and photochemical studies on long chain zinc phthalocyanine derivatives. Synthetic Metals, 2008, 158, 839-847.	3.9	76
71	Surface electrochemistry of iron phthalocyanine axially ligated to 4-mercaptopyridine self-assembled monolayers at gold electrode: Applications to electrocatalytic oxidation and detection of thiocyanate. Journal of Electroanalytical Chemistry, 2005, 579, 283-289.	3.8	74
72	The synthesis and photophysicochemical behaviour of novel water-soluble cationic indium(III) phthalocyanine. Dyes and Pigments, 2009, 82, 244-250.	3.7	74

#	Article	IF	Citations
73	Electrocatalytic oxidation of cysteine by molybdenum(V) phthalocyanine complexes. Journal of Electroanalytical Chemistry, 1996, 408, 213-218.	3.8	73
74	Synthesis and photodynamic potential of tetra- and octa-triethyleneoxysulfonyl substituted zinc phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 186, 298-307.	3.9	71
75	Synthesis, photophysical and photochemical studies of new water-soluble indium(iii) phthalocyanines. Photochemical and Photobiological Sciences, 2007, 6, 659.	2.9	70
76	Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode. Electrochimica Acta, 2010, 55, 6367-6375.	5. 2	70
77	First Example of Nonlinear Optical Materials Based on Nanoconjugates of Sandwich Phthalocyanines with Quantum Dots. Chemistry - A European Journal, 2017, 23, 2820-2830.	3.3	70
78	Photophysicochemical consequences of bovine serum albumin binding to non-transition metal phthalocyanine sulfonates. Photochemical and Photobiological Sciences, 2005, 4, 510.	2.9	69
79	The synthesis, cyclic voltammetry and spectroelectrochemical studies of Co(II) phthalocyanines tetra-substituted at the $\hat{l}\pm$ and \hat{l}^2 positions with phenylthio groups. Dyes and Pigments, 2009, 80, 130-135.	3.7	69
80	Cobalt(II) porphyrazine catalysed reduction of nitrite. Journal of Electroanalytical Chemistry, 1999, 470, 126-135.	3.8	68
81	Voltammetric determination of nitric oxide on cobalt phthalocyanine modified microelectrodes. Journal of Electroanalytical Chemistry, 2001, 512, 56-63.	3.8	68
82	Electrocatalytic oxidation of amitrole and diuron on iron(II) tetraaminophthalocyanine-single walled carbon nanotube dendrimer. Electrochimica Acta, 2010, 55, 2606-2613.	5.2	68
83	Synthesis and electrochemical properties of benzyl-mercapto and dodecyl-mercapto tetrasubstituted manganese phthalocyanine complexes. Electrochimica Acta, 2007, 52, 2520-2526.	5.2	67
84	Electro-oxidation of phenol and its derivatives on poly-Ni(OH)TPhPyPc modified vitreous carbon electrodes. Journal of Electroanalytical Chemistry, 2005, 576, 323-332.	3.8	66
85	The synthesis and electrochemical behaviour of water soluble manganese phthalocyanines: Anion radical versus Mn(I) species. Inorganic Chemistry Communication, 2008, 11, 479-483.	3.9	66
86	Characterization of self-assembled monolayers of iron and cobalt octaalkylthiosubstituted phthalocyanines and their use in nitrite electrocatalytic oxidation. Electrochimica Acta, 2007, 52, 6856-6864.	5.2	64
87	Novel gallium(III) phthalocyanine derivatives – Synthesis, photophysics and photochemistry. Polyhedron, 2007, 26, 2663-2671.	2.2	63
88	Novel, soluble, FluXoro functional substituted zinc phthalocyanines; synthesis, characterization and photophysicochemical properties. Dyes and Pigments, 2010, 86, 174-181.	3.7	63
89	Designing molecular materials and strategies for the electrochemical detection of nitric oxide, superoxide and peroxynitrite in biological systems. Physical Chemistry Chemical Physics, 2010, 12, 9976.	2.8	63
90	Melatonin protects against copper-mediated free radical damage. Journal of Pineal Research, 2002, 32, 237-242.	7.4	62

#	Article	IF	CITATIONS
91	Remarkable sensitivity for detection of bisphenol A on a gold electrode modified with nickel tetraamino phthalocyanine containing Ni–O–Ni bridges. Journal of Hazardous Materials, 2010, 178, 180-186.	12.4	62
92	Effects of ring substituents on electrocatalytic activity of manganese phthalocyanines towards the reduction of molecular oxygen. Journal of Electroanalytical Chemistry, 2006, 595, 161-167.	3.8	61
93	Hydrogen peroxide oxidation of 2-chlorophenol and 2,4,5-trichlorophenol catalyzed by monomeric and aggregated cobalt tetrasulfophthalocyanine. Journal of Molecular Catalysis A, 2005, 227, 209-216.	4.8	60
94	Phthalocyanines and related complexes as electrocatalysts for the detection of nitric oxide. Talanta, 2003, 61, 27-35.	5 . 5	58
95	Comparative electrooxidation of nitrite by electrodeposited Co(II), Fe(II) and Mn(III) tetrakis (benzylmercapto) and tetrakis (dodecylmercapto) phthalocyanines on gold electrodes. Analytica Chimica Acta, 2007, 587, 116-123.	5.4	58
96	Use of cobalt(II) phthalocyanine to improve the sensitivity and stability of glassy carbon electrodes for the detection of cresols, chlorophenols and phenol. Analytica Chimica Acta, 1997, 354, 307-314.	5. 4	57
97	Synthesis, electrochemical and photophysical properties of phthalocyaninato oxotitanium(iv) complexes tetra-substituted at the ? and ? positions with arylthio groups. Dalton Transactions, 2006, , 4482.	3.3	57
98	Comparative efficiency of immobilized non-transition metal phthalocyanine photosensitizers for the visible light transformation of chlorophenols. Journal of Molecular Catalysis A, 2006, 248, 84-92.	4.8	57
99	Chiral 1,2-Subnaphthalocyanines. Journal of the American Chemical Society, 2011, 133, 17322-17328.	13.7	57
100	Synthesis and electrochemical characterisation of \hat{l}_{\pm} - and \hat{l}_{\pm} -tetra-substituted oxo(phthalocyaninato) titanium(IV) complexes. Polyhedron, 2006, 25, 1802-1810.	2.2	56
101	Enhanced Optical Limiting Behavior of an Indium Phthalocyanine–Single-Walled Carbon Nanotube Composite: An Investigation of the Effects of Solvents. Journal of Physical Chemistry C, 2014, 118, 7057-7069.	3.1	56
102	Surface chemistry and electrocatalytic behaviour of tetra-carboxy substituted iron, cobalt and manganese phthalocyanine monolayers on gold electrode. Electrochimica Acta, 2007, 53, 1858-1869.	5.2	55
103	Oxovanadium(iv)-catalysed oxidation of dibenzothiophene and 4,6-dimethyldibenzothiophene. Dalton Transactions, 2012, 41, 13908.	3.3	55
104	Physicochemical and photodynamic antimicrobial chemotherapy activity of morpholine-substituted phthalocyanines: Effect of point of substitution and central metal. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374, 58-67.	3.9	55
105	Electrocatalysis of oxidation of 2-mercaptoethanol, l-cysteine and reduced glutathione by adsorbed and electrodeposited cobalt tetra phenoxypyrrole and tetra ethoxythiophene substituted phthalocyanines. Electrochimica Acta, 2006, 51, 5125-5130.	5. 2	54
106	Syntheses and photophysics of new phthalocyanine derivatives of zinc, cadmium and mercury. New Journal of Chemistry, 2007, 31, 377.	2.8	54
107	Fluorescence quenching and energy transfer in conjugates of quantum dots with zinc and indium tetraamino phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210, 1-7.	3.9	54
108	First-row transition metal phthalocyanines as catalysts for water electrolysis: a comparative study. Electrochimica Acta, 1997, 42, 3519-3524.	5.2	53

#	Article	IF	CITATIONS
109	Fluorescence behavior of nanoconjugates of graphene quantum dots and zinc phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 317, 12-25.	3.9	53
110	Zinc phthalocyanine photocatalyzed oxidation of cyclohexene. Journal of Molecular Catalysis A, 2004, 219, 201-207.	4.8	52
111	Preferential electrosorption of cobalt (II) tetra-aminophthalocyanine at single-wall carbon nanotubes immobilized on a basal plane pyrolytic graphite electrode. Electrochemistry Communications, 2006, 8, 1391-1396.	4.7	52
112	Influence of nanoparticle materials on the photophysical behavior of phthalocyanines. Coordination Chemistry Reviews, 2013, 257, 2401-2418.	18.8	52
113	Electrocatalytic properties of vitamin B12 towards oxidation and reduction of nitric oxide. Electrochimica Acta, 2000, 46, 453-461.	5.2	51
114	Photophysical and photochemical studies of long chain-substituted zinc phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 186, 323-329.	3.9	51
115	Syntheses and investigation of the effects of position and nature of substituent on the spectral, electrochemical and spectroelectrochemical properties of new cobalt phthalocyanine complexes. Polyhedron, 2010, 29, 1257-1270.	2.2	51
116	Cyclic voltammetry and spectroelectrochemistry of a novel manganese phthalocyanine substituted with hexynyl groups. Inorganic Chemistry Communication, 2011, 14, 330-332.	3.9	51
117	Adsorption and separation of platinum and palladium by polyamine functionalized polystyrene-based beads and nanofibers. Minerals Engineering, 2013, 53, 256-265.	4.3	51
118	Optical Limiting Properties of 3,5â€Dithienylenevinylene BODIPY Dyes at 532â€nm. Chemistry - A European Journal, 2017, 23, 14507-14514.	3.3	51
119	New type of metal-free and Zinc(II), In(III), Ga(III) phthalocyanines carrying biologically active substituents: Synthesis and photophysicochemical properties and photodynamic therapy activity. Inorganica Chimica Acta, 2019, 491, 1-8.	2.4	51
120	Self-assembled monolayers and electropolymerized thin films of phthalocyanines as molecular materials for electroanalysis. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1101-1115.	0.8	50
121	Electrochemical and electrocatalytic properties of î±-substituted manganese and titanium phthalocyanines. Electrochimica Acta, 2008, 53, 3139-3148.	5.2	50
122	Synthesis and characterization of electrocatalytic conjugates of tetraamino cobalt (II) phthalocyanine and single wall carbon nanotubes. Electrochimica Acta, 2009, 54, 6347-6353.	5.2	50
123	Characterization and photophysical behavior of phthalocyanines when grafted onto silica nanoparticles. Polyhedron, 2013, 53, 278-285.	2.2	50
124	Photochemical Formation of Ruthenium Phthalocyanine φ-Cation Radical Species. Inorganica Chimica Acta, 1986, 112, 11-15.	2.4	49
125	Electropolymerized Pyrrole-Substituted Manganese Phthalocyanine Films for the Electroassisted Biomimetic Catalytic Reduction of Molecular Oxygen. Electroanalysis, 2005, 17, 186-190.	2.9	49
126	Effects of central metal on the photophysical and photochemical properties of non-transition metal sulfophthalocyanine. Journal of Porphyrins and Phthalocyanines, 2005, 09, 121-129.	0.8	49

#	Article	IF	CITATIONS
127	Immobilized cobalt(II) phthalocyanine–cobalt(II) porphyrin pentamer at a glassy carbon electrode: Applications to efficient amperometric sensing of hydrogen peroxide in neutral and basic media. Electrochemistry Communications, 2005, 7, 679-684.	4.7	48
128	New soluble methylendioxy-phenoxy-substituted zinc phthalocyanine derivatives: Synthesis, photophysical and photochemical studies. Polyhedron, 2009, 28, 2855-2862.	2.2	48
129	The synthesis and photophysical properties of water soluble tetrasulfonated, octacarboxylated and quaternised 2,(3)-tetra-(2 pyridiloxy) Ga phthalocyanines. Dyes and Pigments, 2010, 84, 242-248.	3.7	48
130	The effects of carbon nanotubes on the electrocatalysis of hydrogen peroxide by metallo-phthalocyanines. Talanta, 2011, 85, 2202-2211.	5.5	48
131	Synthesis, photophysics and photochemistry of phthalocyanine-É>-polylysine conjugates in the presence of metal nanoparticles against Staphylococcus aureus. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 233, 24-33.	3.9	48
132	Voltammetric behavior of cysteine and metallothionein on cobalt(II) tetrasulfonated phthalocyanine modified glassy carbon electrodes. Electroanalysis, 1997, 9, 255-260.	2.9	47
133	Influence of cyclodextrins on the fluorescence, photostability and singlet oxygen quantum yields of zinc phthalocyanine and naphthalocyanine complexes. Journal of Porphyrins and Phthalocyanines, 2003, 07, 439-446.	0.8	47
134	Synthesis, photophysics, photochemistry and fluorescence quenching studies on highly soluble substituted oxo-titanium(IV) phthalocyanine complexes. Synthetic Metals, 2010, 160, 1868-1876.	3.9	47
135	Photophysical behavior of zinc monoaminophthalocyanines linked to mercaptopropionic acid-capped CdTe quantum dots. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 220, 11-19.	3.9	47
136	Comparative Spectroscopic and Electrochemical Properties of Bis(octakis(dodecylthio)naphthalocyaninato)europium(III) and Bis(tetra-tert-butylnaphthalocyaninato)europium(III) Complexes. Inorganic Chemistry, 2000, 39, 128-135.	4.0	46
137	Synthesis of zinc phthalocyanine derivatives with improved photophysicochemical properties in aqueous media. Journal of Molecular Structure, 2010, 977, 26-38.	3.6	45
138	Physicochemical and antimicrobial photodynamic chemotherapy of unsymmetrical indium phthalocyanines alone or in the presence of magnetic nanoparticles. New Journal of Chemistry, 2016, 40, 2710-2721.	2.8	45
139	The nature of the oxidation products of dicyanoruthenium phthalocyanine in aqueous and non-aqueous solvents. Polyhedron, 1993, 12, 375-381.	2.2	44
140	Electrocatalytic activity of arylthio tetra-substituted oxotitanium(IV) phthalocyanines towards the oxidation of nitrite. Electrochimica Acta, 2007, 52, 4547-4553.	5.2	44
141	Photophysical and photochemical properties of novel phthalocyanines bearing non-peripherally substituted mercaptoquinoline moiety. Journal of Porphyrins and Phthalocyanines, 2012, 16, 845-854.	0.8	44
142	Characterization of glassy carbon electrodes modified with carbon nanotubes and iron phthalocyanine through grafting and click chemistry. Electrochimica Acta, 2013, 91, 158-165.	5.2	44
143	Photodynamic inactivation of Staphylococcus aureus using low symmetrically substituted phthalocyanines supported on a polystyrene polymer fiber. Dyes and Pigments, 2013, 96, 500-508.	3.7	44
144	Physicochemical and photodynamic antimicrobial chemotherapy studies of mono- and tetra-pyridyloxy substituted indium(III) phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 301, 47-54.	3.9	44

#	Article	lF	Citations
145	Synthesis, photophysical and photochemical properties of poly(oxyethylene)-substituted zinc phthalocyanines. Dalton Transactions, 2007, , 1235-1243.	3.3	43
146	Photophysical and photochemical properties of zinc and aluminum phthalocyanines in the presence of magnetic fluid. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188, 200-206.	3.9	43
147	Covalent linking of ethylene amine functionalized single-walled carbon nanotubes to cobalt (II) tetracarboxyl-phthalocyanines for use in electrocatalysis. Synthetic Metals, 2010, 160, 2089-2098.	3.9	43
148	Probing the sensitive and selective luminescent detection of peroxynitrite using thiol-capped CdTe and CdTe@ZnS quantum dots. Journal of Luminescence, 2013, 134, 448-455.	3.1	43
149	Photophysical properties and photodynamic therapy effect of zinc phthalocyanine-spermine-single walled carbon nanotube conjugate on MCF-7 breast cancer cell line. Synthetic Metals, 2015, 204, 122-132.	3.9	43
150	Octabutylthiophthalocyaninatoiron(ii): electrochemical properties and interaction with cyanide. Dalton Transactions RSC, 2002, , 1806-1811.	2.3	42
151	Voltammetric Detection of Vitamin B1 at Carbon Paste Electrodes and Its Determination in Tablets. Electroanalysis, 2002, 14, 1165-1168.	2.9	42
152	Electrocatalytic oxidation of thiocyanate, l-cysteine and 2-mercaptoethanol by self-assembled monolayer of cobalt tetraethoxy thiophene phthalocyanine. Electrochimica Acta, 2006, 51, 4463-4470.	5.2	42
153	Electrocatalytic oxidation of chlorophenols by electropolymerised nickel(II) tetrakis benzylmercapto and dodecylmercapto metallophthalocyanines complexes on gold electrodes. Electrochimica Acta, 2007, 52, 5039-5045.	5.2	42
154	Synthesis, spectroscopic and electrochemical properties of manganese, nickel and iron octakis-(2-diethylaminoethanethiol)-phthalocyanine. Polyhedron, 2009, 28, 2831-2838.	2.2	42
155	Electrochemical behaviour of gold nanoparticles and Co tetraaminophthalocyanine on glassy carbon electrode. Electrochimica Acta, 2014, 121, 93-101.	5. 2	42
156	Nanosecond nonlinear optical limiting properties of new trinuclear lanthanide phthalocyanines in solution and as thin films. Polyhedron, 2015, 85, 347-354.	2.2	42
157	Photophysicochemical and fluorescence quenching studies of tetra- and octa-carboxy substituted silicon and germanium phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 204, 63-68.	3.9	41
158	Synthesis and photophysical studies of phthalocyanine–gold nanoparticle conjugates. Dalton Transactions, 2011, 40, 11876.	3.3	41
159	Optimal Template Removal from Molecularly Imprinted Polymers by Pressurized Hot Water Extraction. Chromatographia, 2011, 73, 589-593.	1.3	41
160	IMPROVEMENT OF THE PHOTOPHYSICAL PARAMETERS OF ZINC OCTACARBOXY PHTHALOCYANINE UPON CONJUGATION TO MAGNETIC NANOPARTICLES. International Journal of Nanoscience, 2013, 12, 1350010.	0.7	41
161	Optical limiting properties of zinc phthalocyanines in solution and solid PMMA composite films. Optics Communications, 2010, 283, 4749-4753.	2.1	40
162	Characterization and electrocatalytic behaviour of glassy carbon electrode modified with nickel nanoparticles towards amitrole detection. Journal of Electroanalytical Chemistry, 2013, 700, 86-92.	3.8	40

#	Article	IF	Citations
163	Improved nonlinear optical behaviour of ball type indium(III) phthalocyanine linked to glutathione capped nanoparticles. Dyes and Pigments, 2017, 140, 417-430.	3.7	40
164	Synthesis of Offâ€Stoichiometric CoS Nanoplates from a Molecular Precursor for Efficient H ₂ /O ₂ Evolution and Supercapacitance. ChemElectroChem, 2019, 6, 2560-2569.	3.4	40
165	Electrocatalytic oxidation of nitrite by tetra-substituted oxotitanium(IV) phthalocyanines adsorbed or polymerised on glassy carbon electrode. Journal of Electroanalytical Chemistry, 2007, 611, 10-18.	3.8	39
166	Synthesis and photophysical properties of lead phthalocyanines. Polyhedron, 2008, 27, 1102-1110.	2.2	39
167	Photophysical properties of newly synthesized fluorinated zinc phthalocyanines in the presence of CdTe quantum dots and the accompanying energy transfer processes. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210, 200-208.	3.9	39
168	Photophysical characterization of dysprosium, erbium and lutetium phthalocyanines tetrasubstituted with phenoxy groups at non-peripheral positions. Polyhedron, 2011, 30, 1612-1619.	2.2	39
169	Fluorescence "Switch on―of Conjugates of CdTe@ZnS Quantum Dots with Al, Ni and Zn Tetraamino-Phthalocyanines by Hydrogen Peroxide: Characterization and Applications as Luminescent Nanosensors. Journal of Fluorescence, 2013, 23, 963-974.	2.5	39
170	Enhanced optical limiting performance in phthalocyanine-quantum dot nanocomposites by free-carrier absorption mechanism. Optical Materials, 2014, 37, 572-582.	3.6	39
171	Electrode Modification Using Alkynyl Substituted Fe(II) Phthalocyanine via Electrografting and Click Chemistry for Electrocatalysis. Electroanalysis, 2015, 27, 2468-2478.	2.9	39
172	Photophysical study of a covalently linked quantum dot–low symmetry phthalocyanine conjugate. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 212, 27-35.	3.9	38
173	Molecular catalysis of the oxygen reduction reaction by iron porphyrin catalysts tethered into Nafion layers: An electrochemical study in solution and a membrane-electrode-assembly study in fuel cells. Journal of Power Sources, 2012, 216, 67-75.	7.8	38
174	Photooxidation of 4-chlorophenol sensitized by lutetium tetraphenoxy phthalocyanine anchored on electrospun polystyrene polymer fiber. Polyhedron, 2012, 33, 74-81.	2.2	38
175	In situ one-pot synthesis of graphitic carbon nitride quantum dots and its 2,2,6,6-tetramethyl(piperidin-1-yl)oxyl derivatives as fluorescent nanosensors for ascorbic acid. Analytica Chimica Acta, 2017, 991, 113-126.	5.4	38
176	Voltammetric characterisation of the self-assembled monolayers (SAMs) of benzyl- and dodecyl-mercapto tetra substituted metallophthalocyanines complexes. Electrochemistry Communications, 2007, 9, 310-316.	4.7	37
177	Interaction of water-soluble CdTe quantum dots with octacarboxy metallophthalocyanines: A photophysical and photochemical study. Journal of Luminescence, 2009, 129, 356-362.	3.1	37
178	Synthesis, characterization and the electrocatalytic behaviour of nickel (II) tetraamino-phthalocyanine chemically linked to single walled carbon nanotubes. Electrochimica Acta, 2010, 55, 6049-6057.	5.2	37
179	Synthesis and photophysical studies of CdTe quantum dot-monosubstituted zinc phthalocyanine conjugates. Inorganica Chimica Acta, 2011, 367, 173-181.	2.4	37
180	Investigation of photophysicochemical properties of zinc phthalocyanines conjugated to metallic nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 349, 148-161.	3.9	37

#	Article	IF	CITATIONS
181	Facile electrocatalytic oxidation of diuron on polymerized nickel hydroxo tetraamino-phthalocyanine modified glassy carbon electrodes. Talanta, 2010, 81, 1373-1379.	5. 5	36
182	In vitro toxicity testing of zinc tetrasulfophthalocyanines in fibroblast and keratinocyte cells for the treatment of melanoma cancer by photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2011, 103, 98-104.	3.8	36
183	Optical nonlinearities in non-peripherally substituted pyridyloxy phthalocyanines: a combined effect of symmetry, ring-strain and demetallation. Dalton Transactions, 2014, 43, 999-1010.	3.3	36
184	Structural and optical properties of alloyed quaternary CdSeTeS core and CdSeTeS/ZnS core–shell quantum dots. Journal of Alloys and Compounds, 2015, 645, 443-449.	5.5	36
185	Photocatalytic behaviour of zinc tetraamino phthalocyanine-silver nanoparticles immobilized on chitosan beads. Journal of Molecular Catalysis A, 2015, 399, 25-32.	4.8	36
186	phthalocyanine with cysteamine capped silver and silver–gold nanoparticles. Polyhedron, 2016, 119, 434-444.	2.2	36
187	Graphene quantum dots decorated with maleimide and zinc tetramaleimido-phthalocyanine: Application in the design of "OFF-ON―fluorescence sensors for biothiols. Talanta, 2017, 166, 15-26.	5.5	36
188	Optical limiters with improved performance based on nanoconjugates of thiol substituted phthalocyanine with CdSe quantum dots and Ag nanoparticles. Dalton Transactions, 2017, 46, 16190-16198.	3.3	36
189	Asymmetrical and symmetrical zinc phthalocyanine-cobalt ferrite conjugates embedded in electrospun fibers for dual photocatalytic degradation of azo dyes: Methyl Orange and Orange G. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 379, 112-122.	3.9	36
190	Electrochemical Behavior and Detection of Dopamine and Ascorbic Acid at an Iron(II)tetrasulfophthalocyanine Modified Carbon Paste Microelectrode. Electroanalysis, 2003, 15, 847-854.	2.9	35
191	Synthesis and electrochemical studies of a covalently linked cobalt(ii) phthalocyanine–cobalt(ii) porphyrin conjugate. Dalton Transactions, 2005, , 1241-1248.	3.3	35
192	Applications of polymerized metal tetra-amino phthalocyanines towards hydrogen peroxide detection. Journal of Porphyrins and Phthalocyanines, 2010, 14, 252-263.	0.8	35
193	Good optical limiting performance of indium and gallium phthalocyanines in a solution and co-polymer host. Journal of Optics (United Kingdom), 2010, 12, 015208.	2.2	35
194	Synthesis, photophysicochemical and photodynamic antimicrobial chemotherapy studies of indium pyridyl phthalocyanines: Charge versus bridging atom. Inorganica Chimica Acta, 2018, 476, 68-76.	2.4	35
195	Critical assessment of the Quartz Crystal Microbalance with Dissipation as an analytical tool for biosensor development and fundamental studies: Metallophthalocyanine–glucose oxidase biocomposite sensors. Biosensors and Bioelectronics, 2007, 23, 95-101.	10.1	34
196	Comparison of carbon screen-printed and disk electrodes in the detection of antioxidants using CoPc derivatives. Sensors and Actuators B: Chemical, 2012, 166-167, 457-466.	7.8	34
197	Electrospun fibers functionalized with phthalocyanine-gold nanoparticle conjugates for photocatalytic applications. Journal of Molecular Catalysis A, 2013, 371, 125-134.	4.8	34
198	Synthesis and characterization of quantum dots designed for biomedical use. International Journal of Pharmaceutics, 2014, 466, 382-389.	5.2	34

#	Article	IF	CITATIONS
199	The effect of ascorbic acid on the photophysical properties and photodynamic therapy activities of zinc phthalocyanine-single walled carbon nanotube conjugate on MCF-7 cancer cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 174-183.	3.9	34
200	Interaction of Graphene Quantum Dots with 4-Acetamido-2,2,6,6-Tetramethylpiperidine-Oxyl Free Radicals: A Spectroscopic and Fluorimetric Study. Journal of Fluorescence, 2016, 26, 283-295.	2.5	34
201	Catalytic behavior of osmium(II), rhodium(III) and ruthenium(II) Phthalocyanines towards the electrooxidation of cysteine on glassy carbon electrodes. Electroanalysis, 1997, 9, 1257-1261.	2.9	33
202	Substituted catechols as complexing agents for the determination of bismuth, lead, copper and cadmium by adsorptive stripping voltammetry. Analytica Chimica Acta, 1997, 344, 87-95.	5.4	33
203	Synthesis, spectroscopy and photochemistry of octasubstituted thiol-derivatized phthalocyaninatozinc(II) complexes. Inorganic Chemistry Communication, 2003, 6, 1192-1195.	3.9	33
204	The effect of Ge, Si and Sn phthalocyanine photosensitizers on cell proliferation and viability of human oesophageal carcinoma cells. Journal of Photochemistry and Photobiology B: Biology, 2006, 83, 55-62.	3.8	33
205	Tuning the redox properties of Co-N4 macrocyclic complexes for the catalytic electrooxidation of glucose. Electrochimica Acta, 2008, 53, 4883-4888.	5. 2	33
206	Water-soluble phthalocyanines mediated photodynamic effect on mesothelioma cells. Journal of Porphyrins and Phthalocyanines, 2009, 13, 681-690.	0.8	33
207	Synthesis, photophysical and photochemical studies of water soluble cationic zinc phthalocyanine derivatives. Polyhedron, 2009, 28, 416-424.	2.2	33
208	Improved I-cysteine electrocatalysis through a sequential drop dry technique using multi-walled carbon nanotubes and cobalt tetraaminophthalocyanine conjugates. Electrochimica Acta, 2014, 128, 32-40.	5.2	33
209	Photophysical properties of a novel styryl-BODIPY with a fused crown ether moiety. Journal of Porphyrins and Phthalocyanines, 2018, 22, 1-9.	0.8	33
210	Acetophenone substituted phthalocyanines and their graphene quantum dots conjugates as photosensitizers for photodynamic antimicrobial chemotherapy against Staphylococcus aureus. Photodiagnosis and Photodynamic Therapy, 2020, 29, 101607.	2.6	33
211	Thiol oxidation at 2-mercaptopyrimidine-appended cobalt phthalocyanine modified glassy carbon electrodes. Journal of Electroanalytical Chemistry, 2007, 600, 251-256.	3.8	32
212	The synthesis and fluorescence behaviour of phthalocyanines unsymmetrically substituted with naphthol and carboxy groups. Dyes and Pigments, 2010, 86, 68-73.	3.7	32
213	Synthesis, characterization and application of monocarboxy-phthalocyanine-single walled carbon nanotube conjugates in electrocatalysis. Polyhedron, 2011, 30, 1820-1829.	2.2	32
214	Singly and Doubly N-Confused Calix[4]phyrin Organoplatinum(II) Complexes as Near-IR Triplet Sensitizers. Inorganic Chemistry, 2017, 56, 12572-12580.	4.0	32
215	Synthesis and photophysicochemical properties of novel axially di-substituted silicon (IV) phthalocyanines and their photodynamic antimicrobial chemotherapy (PACT) activity against Staphylococcus aureus. Synthetic Metals, 2019, 258, 116203.	3.9	32
216	Nanohybrid electrocatalyst based on cobalt phthalocyanine-carbon nanotube-reduced graphene oxide for ultrasensitive detection of glucose in human saliva. Sensors and Actuators B: Chemical, 2021, 348, 130723.	7.8	32

#	Article	IF	Citations
217	Synthesis, photophysical and photochemical properties of novel soluble tetra[4-(thiophen-3yl)-phenoxy]phthalocyaninato zinc(II) and Ti(IV)O complexes. Inorganica Chimica Acta, 2009, 362, 4875-4883.	2.4	31
218	Trends in the TD-DFT calculations of porphyrin and phthalocyanine analogs. Journal of Porphyrins and Phthalocyanines, 2014, 18, 630-641.	0.8	31
219	Low symmetric metallophthalocyanine modified electrode via click chemistry for simultaneous detection of heavy metals. Journal of Electroanalytical Chemistry, 2018, 813, 58-66.	3.8	31
220	Interaction of nitric oxide with cobalt(II) phthalocyanine: kinetics, equilibria and electrocatalytic studies. Polyhedron, 1998, 17, 4415-4423.	2.2	30
221	Synthesis, electrochemical and spectroelectrochemical studies of octaphenylthio-substituted phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2005, 09, 484-490.	0.8	30
222	Synthesis and photochemical characterization of a zinc phthalocyanine–zinc porphyrin heterotrimer and heterononamer. Dalton Transactions, 2005, , 3732.	3.3	30
223	Microwave synthesis and photophysics of new tetrasulfonated tin(II) macrocycles. Journal of Porphyrins and Phthalocyanines, 2007, 11, 109-117.	0.8	30
224	The photophysical studies of a mixture of CdTe quantum dots and negatively charged zinc phthalocyanines. Polyhedron, 2008, 27, 1953-1958.	2.2	30
225	Synthesis, photophysics and photochemistry of tin(IV) phthalocyanine derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 282-290.	3.9	30
226	Photophysical, photochemical and electrochemical properties of water soluble silicon, titanium and zinc phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201, 91-97.	3.9	30
227	Opposing responses elicited by positively charged phthalocyanines in the presence of CdTe quantum dots. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 201, 228-236.	3.9	30
228	Synthesis, photophysics and photochemistry of novel tetra(quinoxalinyl)phthalocyaninato zinc(II) complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 12-18.	3.9	30
229	Conjugates of platinum nanoparticles with gallium tetra – (4-Carboxyphenyl) porphyrin and their use in photodynamic antimicrobial chemotherapy when in solution or embedded in electrospun fiber. Polyhedron, 2014, 76, 94-101.	2.2	30
230	Synthesis and photophysical properties of BODIPY-decorated graphene quantum dot–phthalocyanine conjugates. New Journal of Chemistry, 2018, 42, 6051-6061.	2.8	30
231	Photo-physicochemical properties and in vitro photodynamic therapy activity of morpholine-substituted Zinc(II)-Phthalocyanines π-π stacked on biotinylated graphene quantum dots. Dyes and Pigments, 2019, 165, 488-498.	3.7	30
232	Interaction of nitric oxide with cobalt(II) tetrasulfophthalocyanine. Polyhedron, 2000, 19, 229-234.	2.2	29
233	Solvent and central metal effects on the photophysical and photochemical properties of peripherally tetra mercaptopyridine substituted metallophthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 203, 204-210.	3.9	29
234	Photophysical and photochemical properties of a novel thiol terminated low symmetry zinc phthalocyanine complex and its gold nanoparticles conjugate. Dalton Transactions, 2013, 42, 4922.	3.3	29

#	Article	IF	Citations
235	Electrode modification using nanocomposites of boron or nitrogen doped graphene oxide and cobalt (II) tetra aminophenoxy phthalocyanine nanoparticles. Electrochimica Acta, 2016, 196, 457-469.	5.2	29
236	Optical limiting properties of 3,5-diphenyldibenzo-azaBODIPY at 532 nm. New Journal of Chemistry, 2017, 41, 12319-12325.	2.8	29
237	Photophysical properties and photodynamic therapy activity of a <i>meso</i> -tetra(4-carboxyphenyl)porphyrin tetramethyl ester–graphene quantum dot conjugate. New Journal of Chemistry, 2019, 43, 4518-4524.	2.8	29
238	The study of the interactions of cobalt(II) tetrasulfophthalocyanine with cysteine and histidine. Polyhedron, 1997, 16, 3279-3284.	2.2	28
239	Interaction of serotonin and melatonin with sodium, potassium, calcium, lithium and aluminium. Journal of Pineal Research, 2001, 31, 102-108.	7.4	28
240	Synthesis, spectroscopy and electrochemistry of octaphenoxyphthalocyaninato silicon complexes. Journal of Porphyrins and Phthalocyanines, 2001, 05, 555-563.	0.8	28
241	Photosensitizing properties of octacarboxy metallophthalocyanines in aqueous medium and their interaction with bovine serum albumin. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200, 396-401.	3.9	28
242	The synthesis and photophysicochemical properties of low-symmetry zinc phthalocyanine analogues. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 206, 169-176.	3.9	28
243	Imidazole-functionalized polymer microspheres and fibers – useful materials for immobilization of oxovanadium(iv) catalysts. Journal of Materials Chemistry, 2012, 22, 5792.	6.7	28
244	Reverse saturation absorption spectra and optical limiting properties of chlorinated tetrasubstituted phthalocyanines containing different metals. Optical Materials, 2012, 34, 1869-1877.	3.6	28
245	The interaction of silver nanoparticles with low symmetry cysteinyl metallophthalocyanines and their antimicrobial effect. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 255, 1-9.	3.9	28
246	Axial coordination of zinc and silicon phthalocyanines to silver and gold nanoparticles: an investigation of their photophysicochemical and antimicrobial behavior. Journal of Porphyrins and Phthalocyanines, 2013, 17, 417-430.	0.8	28
247	A study of the photophysicochemical and antimicrobial properties of two zinc phthalocyanine–silver nanoparticle conjugates. New Journal of Chemistry, 2013, 37, 1216.	2.8	28
248	Applications of lead phthalocyanines embedded in electrospun fibers for the photoinactivation of Escherichia coli in water. Dyes and Pigments, 2014, 111, 8-15.	3.7	28
249	Nonlinear optical behaviour of indium-phthalocyanine tethered to magnetite or silica nanoparticles. New Journal of Chemistry, 2015, 39, 1665-1677.	2.8	28
250	Conjugation of Azide-functionalised CdSe/ZnS Quantum Dots with Tetrakis(5-hexyn-oxy) Fe(II) phthalocyanine via Click Chemistry for Electrocatalysis. Electrochimica Acta, 2016, 194, 26-39.	5.2	28
251	Electrocatalytic activity of a push-pull phthalocyanine in the presence of reduced and amino functionalized graphene quantum dots towards the electrooxidation of hydrazine. Journal of Electroanalytical Chemistry, 2018, 820, 146-160.	3.8	28
252	Physicochemical and antimicrobial photodynamic chemotherapy (against E. coli) by indium phthalocyanines in the presence of silver–iron bimetallic nanoparticles. Polyhedron, 2019, 162, 30-38.	2.2	28

#	Article	IF	CITATIONS
253	Photophysical properties and photodynamic therapy activities of detonated nanodiamonds-BODIPY-phthalocyanines nanoassemblies. Photodiagnosis and Photodynamic Therapy, 2019, 26, 101-110.	2.6	28
254	A simple quinoline-thiophene Schiff base turn-off chemosensor for Hg2+ detection: spectroscopy, sensing properties and applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120338.	3.9	28
255	Photocatalytic properties of neodymium diphthalocyanine towards the transformation of 4-chlorophenol. Journal of Molecular Catalysis A, 2000, 164, 69-76.	4.8	27
256	Synthesis, photophysical and photochemical studies of germanium and tin phthalocyanine complexes. Journal of Porphyrins and Phthalocyanines, 2002, 06, 17-25.	0.8	27
257	Self-assembled monolayers (SAMs) of cobalt tetracarboxylic acidchloride phthalocyanine covalently attached onto a preformed mercaptoethanol SAM: A novel method. Electrochimica Acta, 2006, 51, 3489-3494.	5.2	27
258	A highly selective and sensitive pyridylazo-2-naphthol-poly(acrylic acid) functionalized electrospun nanofiber fluorescence "turn-off―chemosensory system for Ni2+. Analytical Methods, 2012, 4, 1729.	2.7	27
259	Synthesis and photophysicochemical properties of zinc phthalocyanine derivatized with benzothiazole or carbazole photosensitizers. Polyhedron, 2013, 61, 119-125.	2.2	27
260	Zinc(II) 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]-phthalocyanine anchored on an electrospun polysulfone polymer fiber: Application for photosensitized conversion of methyl orange. Journal of Molecular Catalysis A, 2013, 366, 247-253.	4.8	27
261	Nonlinear optical response of tetra and mono substituted zinc phthalocyanine complexes. Journal of Luminescence, 2015, 167, 71-79.	3.1	27
262	The interaction between graphene quantum dots grafted with polyethyleneimine and Au@Ag nanoparticles: Application as a fluorescence "turn-on―nanoprobe. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 324, 96-105.	3.9	27
263	Photophysical studies of graphene quantum dots - Pyrene-derivatized porphyrins conjugates when encapsulated within Pluronic F127 micelles. Dyes and Pigments, 2018, 148, 405-416.	3.7	27
264	Corrosion Resistance of Aluminum against Acid Activation: Impact of Benzothiazole-Substituted Gallium Phthalocyanine. Molecules, 2019, 24, 207.	3.8	27
265	Electrochemical studies of manganese tetraamminophthalocyanine monomer and polymer. Electrochimica Acta, 2004, 49, 1417-1428.	5 . 2	27
266	Equilibrium and kinetic studies of the reaction between pyridine and cobalt(II) phthalocyanine in DMSO. Polyhedron, 1995, 14, 2325-2329.	2.2	26
267	Comparative photocatalytic efficiency of oxotitanium(IV) phthalocyanines for the oxidation of 1-hexene. Journal of Molecular Catalysis A, 2007, 273, 149-155.	4.8	26
268	Photophysical and photochemical properties of tetrasulfonated silicon and germanium phthalocyanine in aqueous and non-aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197, 273-280.	3.9	26
269	Electro-catalyzed oxidation of reduced glutathione and 2-mercaptoethanol by cobalt phthalocyanine-containing screen printed graphite electrodes. Materials Science and Engineering C, 2008, 28, 606-612.	7.3	26
270	Synthesis and Pd(II) binding studies of octasubstituted alkyl thio derivatised phthalocyanines. Polyhedron, 2009, 28, 2710-2718.	2.2	26

#	Article	IF	Citations
271	Synthesis and electrochemical properties of new cobalt and manganese phthalocyanine complexes tetra-substituted with 3,4-(methylendioxy)-phenoxy. Polyhedron, 2010, 29, 2352-2363.	2.2	26
272	The effect of substituents on the photoinduced energy transfer between CdTe quantum dots and mercapto substituted zinc phthalocyanine derivatives. Dalton Transactions, 2010, 39, 3460.	3.3	26
273	Photophysical behaviour of asymmetrically substituted metal free, Mg and Zn phthalocyanines in the presence of folic acid. Polyhedron, 2011, 30, 654-659.	2.2	26
274	Optical limiting behavior of ring substituted zinc, indium and gallium phthalocyanines in the presence of quantum dots. Journal of Porphyrins and Phthalocyanines, 2011, 15, 1239-1249.	0.8	26
275	Electrochemical impedimetric immunosensor for the detection of measles-specific IgG antibodies after measles infections. Biosensors and Bioelectronics, 2013, 49, 32-38.	10.1	26
276	Development of nanocomposites of phosphorus-nitrogen co-doped graphene oxide nanosheets and nanosized cobalt phthalocyanines for electrocatalysis. Electrochimica Acta, 2016, 213, 529-539.	5.2	26
277	Graphene quantum dots anchored onto mercaptopyridine-substituted zinc phthalocyanine-Au@Ag nanoparticle hybrid: Application as fluorescence "off-on-off―sensor for Hg2+ and biothiols. Dyes and Pigments, 2017, 145, 189-201.	3.7	26
278	Halogen substituted A2B type Co(III)triarylcorroles: Synthesis, electronic structure and two step modulation of electrocatalyzed hydrogen evolution reactions. Dyes and Pigments, 2017, 142, 416-428.	3.7	26
279	Sn(<scp>iv</scp>) <i>N</i> -confused porphyrins as photosensitizer dyes for photodynamic therapy in the near IR region. Dalton Transactions, 2020, 49, 15180-15183.	3.3	26
280	Electrochemical and catalytic properties of chromium tetraaminophthalocyanine. Journal of Electroanalytical Chemistry, 2004, 573, 77-85.	3.8	25
281	Electrochemical studies of manganese tetraamminophthalocyanine monomer and polymer. Electrochimica Acta, 2004, 49, 1417-1428.	5.2	25
282	Photophysical, photochemical and bovine serum albumin binding studies on water-soluble gallium(III) phthalocyanine derivatives. Journal of Porphyrins and Phthalocyanines, 2007, 11, 635-644.	0.8	25
283	Synthesis, Photophysical and Photochemical Properties of Poly(oxyethylene)-Substituted Phthalocyaninato Oxotitanium(IV) Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 3573-3581.	2.0	25
284	Spectroscopic and photophysicochemical behaviour of novel cadmium phthalocyanine derivatives tetra-substituted at the alpha and beta positions. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 99-106.	3.9	25
285	Photoelectrochemical characterization of electrodeposited font ZnO /font thin films sensitized by octacarboxymetallophthalocyanine derivatives. Journal of Porphyrins and Phthalocyanines, 2010, 14, 142-149.	0.8	25
286	Photophysical and non-linear optical behavior of novel tetra alkynyl terminated indium phthalocyanines: Effects of the carbon chain length. Polyhedron, 2015, 88, 73-80.	2.2	25
287	Synthesis, characterization and photophysical properties of an acenaphthalene fused-ring-expanded NIR absorbing aza-BODIPY dye. RSC Advances, 2015, 5, 78253-78258.	3.6	25
288	Improvement of nonlinear optical properties of phthalocyanine bearing diethyleneglycole chains: Influence of symmetry lowering vs. heavy atom effect. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1296-1305.	0.8	25

#	Article	IF	CITATIONS
289	Synthesis, photophysical and nonlinear optical properties of a series of ball-type phthalocyanines in solution and thin films. New Journal of Chemistry, 2017, 41, 2020-2028.	2.8	25
290	Effects of Substituents on the Electrocatalytic Activity of Cobalt Phthalocyanines when Conjugated to Graphene Quantum Dots. Electroanalysis, 2017, 29, 2470-2482.	2.9	25
291	Fluorescence behaviour of supramolecular hybrids containing graphene quantum dots and pyrene-derivatized phthalocyanines and porphyrins. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 333, 174-185.	3.9	25
292	Photophysical behavior and photodynamic therapy activity of conjugates of zinc monocarboxyphenoxy phthalocyanine with human serum albumin and chitosan. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 292-300.	3.9	25
293	Glycosylated zinc phthalocyanine-gold nanoparticle conjugates for photodynamic therapy: Effect of nanoparticle shape. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 203, 85-95.	3.9	25
294	Photodynamic therapy activity of zinc phthalocyanine linked to folic acid and magnetic nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2018, 186, 216-224.	3.8	25
295	Investigation of novel substituted zinc and aluminium phthalocyanines for photodynamic therapy of epithelial breast cancer. Dyes and Pigments, 2019, 170, 107592.	3.7	25
296	Non-aggregated lipophilic water-soluble tin porphyrins as photosensitizers for photodynamic therapy and photodynamic antimicrobial chemotherapy. New Journal of Chemistry, 2020, 44, 11006-11012.	2.8	25
297	Cyclic voltammetric studies of octabutylthiophthalo-cyaninato-cobalt(II) and its self-assembled monolayer (SAM) on gold electrode. Journal of Porphyrins and Phthalocyanines, 2002, 06, 98-106.	0.8	24
298	Electrochemical characterisation of tetra- and octa-substituted oxo(phthalocyaninato)titanium(IV) complexes. Electrochimica Acta, 2007, 52, 3641-3650.	5.2	24
299	6-Hydroxymelatonin protects against quinolinic-acid-induced oxidative neurotoxicity in the rat hippocampus. Journal of Pharmacy and Pharmacology, 2010, 57, 877-881.	2.4	24
300	Investigation of homogeneous photosensitized oxidation activities of palladium and platinum octasubstituted phthalocyanines: Oxidation of 4-nitrophenol. Journal of Molecular Catalysis A, 2011, 334, 123-129.	4.8	24
301	Physicochemical behavior of zinc tetrakis (benzylmercapto) phthalocyanine when used to functionalize gold nanoparticles and in electronspun fibers. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 240, 50-58.	3.9	24
302	Spectral, photophysical and photochemical properties of tetra- and octaglycosylated zinc phthalocyanines. Photochemical and Photobiological Sciences, 2012, 11, 679-686.	2.9	24
303	Physicochemical properties of a zinc phthalocyanine – pyrene conjugate adsorbed onto single walled carbon nanotubes. Dalton Transactions, 2013, 42, 10769.	3.3	24
304	Third order nonlinear optical properties of phthalocyanines in the presence nanomaterials and in polymer thin films. Journal of Porphyrins and Phthalocyanines, 2013, 17, 691-702.	0.8	24
305	Optical nonlinearities and photophysicochemical behaviour of green and blue forms of lutetium bisphthalocyanines. Journal of Materials Chemistry C, 2014, 2, 5431.	5 . 5	24
306	Improving singlet oxygen generating abilities of phthalocyanines: aluminum tetrasulfonated phthalocyanine in the presence of graphene quantum dots and folic acid. Journal of Coordination Chemistry, 2017, 70, 1601-1616.	2.2	24

#	Article	IF	Citations
307	A2B type copper(III)corroles containing zero-to-five fluorine atoms: Synthesis, electronic structure and facile modulation of electrocatalyzed hydrogen evolution. Dyes and Pigments, 2017, 137, 523-531.	3.7	24
308	A novel axially palladium(II)-Schiff base complex substituted silicon(IV) phthalocyanine: Synthesis, characterization, photophysicochemical properties and photodynamic antimicrobial chemotherapy activity against Staphylococcus aureus. Polyhedron, 2019, 173, 114135.	2.2	24
309	Electrochemical behaviour of thiol-derivatised zinc (II) phthalocyanine complexes and their self-immobilised films at gold electrodes. Microchemical Journal, 2003, 75, 241-247.	4.5	23
310	Synthesis and electrochemical characterisation of a near infrared absorbing oxo vanadium(IV) octapentylthio-phthalocyanine. Polyhedron, 2008, 27, 2799-2804.	2.2	23
311	Synthesis, electrochemical characterization of tetra- and octa-substituted dodecyl-mercapto tin phthalocyanines in solution and as self-assembled monolayers. Electrochimica Acta, 2008, 54, 183-191.	5.2	23
312	Synthesis, photophysical and nonlinear optical properties of microwave synthesized 4-tetra and octa-substituted lead phthalocyanines. Polyhedron, 2009, 28, 1475-1480.	2.2	23
313	Fluorescence studies of quantum dots and zinc tetraamino phthalocyanine conjugates. Inorganic Chemistry Communication, 2009, 12, 828-831.	3.9	23
314	Tuning the physico-electrochemical properties of novel cobalt (II) octa[(3,5-biscarboxylate)-phenoxy] phthalocyanine complex using phenylamine-functionalised SWCNTs. Carbon, 2010, 48, 763-773.	10.3	23
315	Fabrication and characterization of single walled carbon nanotubes-iron phthalocyanine nano-composite: surface properties and electron transport dynamics of its self assembled monolayer film. New Journal of Chemistry, 2010, 34, 2875.	2.8	23
316	Photophysical and photochemical behavior of electrospun fibers of a polyurethane polymer chemically linked to lutetium carboxyphenoxy phthalocyanine. New Journal of Chemistry, 2011, 35, 1588.	2.8	23
317	Photodegradation of Orange-G using zinc octacarboxyphthalocyanine supported on Fe3O4 nanoparticles. Journal of Molecular Catalysis A, 2013, 380, 131-138.	4.8	23
318	The development of catalytic oxovanadium(IV)-containing microspheres for the oxidation of various organosulfur compounds. Applied Catalysis A: General, 2013, 462-463, 157-167.	4.3	23
319	Effects of analytes on the fluorescence properties of CdTe@ZnS quantum dots decorated with cobalt tetraamino-phthalocyanine. Journal of Luminescence, 2014, 146, 275-283.	3.1	23
320	Fabrication of phthalocyanine-magnetic nanoparticles hybrid nanofibers for degradation of Orange-G. Journal of Molecular Catalysis A, 2014, 381, 132-137.	4.8	23
321	Surface modification of silica-coated gadolinium oxide nanoparticles with zinc tetracarboxyphenoxy phthalocyanine for the photodegradation of Orange G. Journal of Molecular Catalysis A, 2015, 403, 64-76.	4.8	23
322	Photodynamic therapy effect of zinc monoamino phthalocyanine–folic acid conjugate adsorbed on single walled carbon nanotubes on melanoma cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 1120-1125.	3.9	23
323	Synthesis and physicochemical properties of zinc and indium phthalocyanines conjugated to quantum dots, gold and magnetic nanoparticles. Dyes and Pigments, 2016, 131, 186-200.	3.7	23
324	Photophysicochemical behaviour and antimicrobial properties of monocarboxy Mg (II) and Al (III) phthalocyanine-magnetite conjugates. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 407-414.	3.9	23

#	Article	IF	CITATIONS
325	Fluorescence "turn-ON―nanosensor for cyanide ion using supramolecular hybrid of graphene quantum dots and cobalt pyrene-derivatized phthalocyanine. Dyes and Pigments, 2019, 160, 328-335.	3.7	23
326	Nonlinear optical properties of metal free and nickel binuclear phthalocyanines. Dyes and Pigments, 2019, 168, 347-356.	3.7	23
327	Synthesis and photophysical properties of a covalently linked porphyrin-phthalocyanine conjugate. Journal of Porphyrins and Phthalocyanines, 2005, 09, 186-197.	0.8	22
328	Synthesis, photophysical and photochemical properties of octa-substituted antimony phthalocyanines. Polyhedron, 2009, 28, 479-484.	2.2	22
329	Synthesis and photophysical behavior of axially substituted phthalocyanine, tetrabenzotriazaporphyrin, and triazatetrabenzcorrole phosphorous complexes. Journal of Porphyrins and Phthalocyanines, 2009, 13, 153-160.	0.8	22
330	The synthesis and photophysical properties of novel cationic tetra pyridiloxy substituted aluminium, silicon and titanium phthalocyanines in water. Journal of Luminescence, 2010, 130, 1787-1793.	3.1	22
331	Synthesis and photophysical properties of metal free, titanium, magnesium and zinc phthalocyanines substituted with a single carboxyl and hexylthio groups. Polyhedron, 2011, 30, 1975-1981.	2.2	22
332	Surface patterning using scanning electrochemical microscopy to locally trigger a "click―chemistry reaction. Electrochemistry Communications, 2013, 31, 112-115.	4.7	22
333	Enhanced nonlinear optical properties of octa-substituted lead and cadmium phthalocyanines when embedded in poly(bisphenol A carbonate) as thin films. Polyhedron, 2014, 81, 607-613.	2.2	22
334	Aggregation Control of Robust Water-Soluble Zinc(II) Phthalocyanine-Based Photosensitizers. Langmuir, 2016, 32, 11980-11985.	3.5	22
335	Nonlinear optical dynamics of benzothiazole derivatized phthalocyanines in solution, thin films and when conjugated to nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 46-59.	3.9	22
336	Platinum Nanoparticles Supported on Carbon Nanodots as Anode Catalysts for Direct Alcohol Fuel Cells. International Journal of Electrochemical Science, 2017, 12, 6365-6378.	1.3	22
337	Optical limiting properties of 3,5-dipyrenylvinyleneBODIPY dyes at 532 nm. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 191, 357-364.	3.9	22
338	Photophysical and nonlinear optical characteristics of pyridyl substituted phthalocyanine - Detonation nanodiamond conjugated systems in solution. Diamond and Related Materials, 2019, 94, 218-232.	3.9	22
339	Photophysicochemical properties and photodynamic therapy activity of chloroindium(III) tetraarylporphyrins and their gold nanoparticle conjugates. Journal of Porphyrins and Phthalocyanines, 2019, 23, 34-45.	0.8	22
340	Microcomputer-aided chemistry. Chemometrics and Intelligent Laboratory Systems, 1989, 5, 233-246.	3.5	21
341	Kinetics of the reaction of cyanide with ruthenium phthalocyanine complexes. Inorganica Chimica Acta, 1993, 208, 239-242.	2.4	21
342	Metal (Co, Fe) tribenzotetraazachlorin–fullerene conjugates: Impact of direct π-bonding on the redox behaviour and oxygen reduction reaction. Electrochemistry Communications, 2009, 11, 1221-1225.	4.7	21

#	Article	IF	Citations
343	Probing electrochemical and electrocatalytic properties of cobalt(II) and manganese(III) octakis(hexylthio)phthalocyanine as self-assembled monolayers. Journal of Porphyrins and Phthalocyanines, 2010, 14, 932-947.	0.8	21
344	Electrode modification using iron metallophthalocyanine through click chemistry and axial ligation with pyridine. Journal of Electroanalytical Chemistry, 2012, 687, 111-116.	3.8	21
345	Synthesis of ytterbium bisphthalocyanines: Photophysicochemical properties and nonlinear absorption behavior. Optical Materials, 2014, 37, 139-146.	3.6	21
346	Photoinactivation of Candida albicans and Escherichia coli using aluminium phthalocyanine on gold nanoparticles. Photochemical and Photobiological Sciences, 2015, 14, 1346-1356.	2.9	21
347	Photodynamic antimicrobial chemotherapy activity of gallium tetra-(4-carboxyphenyl) porphyrin when conjugated to differently shaped platinum nanoparticles. Journal of Molecular Structure, 2015, 1099, 432-440.	3.6	21
348	Spectroscopic and nonlinear optical properties of the four positional isomers of 41±-(4-tert-butylphenoxy)phthalocyanine. Journal of Materials Chemistry C, 2015, 3, 10705-10714.	5.5	21
349	Comparative photophysicochemical behavior of nanoconjugates of indium tetracarboxyphenoxy phthalocyanines covalently linked to CdTe/ZnSe/ZnO quantum dots. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 312, 34-44.	3.9	21
350	Electrocatalytic activity of bimetallic Au–Pd nanoparticles in the presence of cobalt tetraaminophthalocyanine. Journal of Colloid and Interface Science, 2015, 440, 151-161.	9.4	21
351	Synthesis and optical limiting properties of new lanthanide bis- and tris-phthalocyanines. Journal of Molecular Structure, 2016, 1121, 111-118.	3.6	21
352	Optical limiting properties of 2,6-dibromo-3,5- distyrylBODIPY dyes at 532 nm. Journal of Porphyrins and Phthalocyanines, 2017, 21, 523-531.	0.8	21
353	Effects of Pluronic F127 micelles as delivering agents on the vitro dark toxicity and photodynamic therapy activity of carboxy and pyrene substituted porphyrins. Polyhedron, 2018, 152, 102-107.	2.2	21
354	The electrochemical detection of prostate specific antigen on glassy carbon electrode modified with combinations of graphene quantum dots, cobalt phthalocyanine and an aptamer. Journal of Inorganic Biochemistry, 2021, 221, 111462.	3.5	21
355	Cyclic voltammetry and photooxidation of molybdenum(V) phthalocyanine. Polyhedron, 1994, 13, 215-220.	2.2	20
356	INTERACTIONS OF COBALT(II) TETRASULFOPHTHALOCYANINE WITH NITRITE IN THE PRESENCE OF NITRATE AND PERCHLORATE IONS. Journal of Coordination Chemistry, 1999, 46, 433-444.	2.2	20
357	Electrochemical Characterization of Selfâ€Assembled Monolayer of a Novel Manganese Tetrabenzylthio‧ubstituted Phthalocyanine and Its Use in Nitrite Oxidation. Electroanalysis, 2008, 20, 1863-1872.	2.9	20
358	Electrocatalytic and photosensitizing behavior of metallophthalocyanine complexes. Journal of Porphyrins and Phthalocyanines, 2008, 12, 1005-1021.	0.8	20
359	Electrocatalytic studies of covalently immobilized metal tetra-amino phthalocyanines onto derivatized screen-printed gold electrodes. Mikrochimica Acta, 2010, 171, 321-332.	5.0	20
360	Photophysical and photochemical properties of Ni(II), Pd(II) and Pt(II) aryloxo and alkylthio derivatised phthalocyanine. Journal of Molecular Structure, 2010, 973, 96-103.	3.6	20

#	Article	IF	CITATIONS
361	Redox activity of CdTe quantum dots linked to nickel tetraaminophthalocyanine: Effects of adsorption versus electrodeposition on the catalytic oxidation of chlorophenols. Microchemical Journal, 2011, 99, 478-485.	4.5	20
362	Electrochemical, microscopic and spectroscopic characterization of benzene diamine functionalized single walled carbon nanotube-cobalt (II) tetracarboxy-phthalocyanine conjugates. Journal of Colloid and Interface Science, 2011, 354, 437-447.	9.4	20
363	Tetra and octa(2,6-di-iso-propylphenoxy)-substituted phthalocyanines: a comparative study among their photophysicochemical properties. Journal of Porphyrins and Phthalocyanines, 2012, 16, 163-174.	0.8	20
364	Characterization of 2,(3)-tetra-(4-oxo-benzamide) phthalocyaninato cobalt (II)—Single walled carbon nanotube conjugate platforms and their use in electrocatalysis of amitrole. Electrochimica Acta, 2012, 68, 44-51.	5 . 2	20
365	Ultrafast Photodynamics of the Indoline Dye D149 Adsorbed to Porous ZnO in Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2013, 14, 132-139.	2.1	20
366	Nanoconjugates of CdTe@ZnS quantum dots with cobalt tetraamino-phthalocyanine: Characterization and implications for the fluorescence recognition of superoxide anion. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 257, 11-19.	3.9	20
367	Nonlinear optical behavior of metal octaphenoxy phthalocyanines: effect of distortion caused by the central metal. Journal of Porphyrins and Phthalocyanines, 2013, 17, 920-927.	0.8	20
368	Application of graphene quantum dots functionalized with thymine and thymine-appended zinc phthalocyanine as novel photoluminescent nanoprobes. New Journal of Chemistry, 2017, 41, 1447-1458.	2.8	20
369	Enhanced nonlinear optical response of benzothiazole substituted ball-type phthalocyanines in the presence of metallic nanoparticles. Optical Materials, 2018, 82, 93-103.	3.6	20
370	Photophysicochemical properties and photodynamic therapy activity of highly water-soluble Zn(II) phthalocyanines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 203, 236-243.	3.9	20
371	Electrocatalytic activity of a push pull Co(II) phthalocyanine in the presence of graphitic carbon nitride quantum dots. Electrochimica Acta, 2019, 326, 134978.	5.2	20
372	Nonlinear optical responses of carbazole-substituted phthalocyanines conjugated to graphene quantum dots and in thin films. Journal of Luminescence, 2019, 213, 88-97.	3.1	20
373	Electrocatalytic Activity of Asymmetrical Cobalt Phthalocyanines in the Presence of N Doped Graphene Quantum Dots: The Pushâ€pull Effects of Substituents. Electroanalysis, 2019, 31, 891-904.	2.9	20
374	Synthesis, characterization and photodynamic activity of Sn(<scp>iv</scp>) triarylcorroles with red-shifted Q bands. New Journal of Chemistry, 2019, 43, 18805-18812.	2.8	20
375	The modulation of the photophysical and photodynamic therapy activities of a phthalocyanine by detonation nanodiamonds: Comparison with graphene quantum dots and carbon nanodots. Diamond and Related Materials, 2020, 101, 107617.	3.9	20
376	Enhancement of photodynamic antimicrobialtherapy through the use of cationic indium porphyrin conjugated to Ag/CuFe2O4 nanoparticles. Photodiagnosis and Photodynamic Therapy, 2020, 30, 101736.	2.6	20
377	Cyclic voltammetry and spectroelectrochemistry of rhodium phthalocyanines. Journal of the Chemical Society Dalton Transactions, 1994, , 1359.	1.1	19
378	Reversible sulfur dioxide reactions with cyclopentadienylnickel(II) organochalcogenide complexes. Journal of Organometallic Chemistry, 1998, 564, 37-45.	1.8	19

#	Article	IF	CITATIONS
379	Comparative behavior of conjugates of tantalum phthalocyanines with gold nanoparticles or single walled carbon nanotubes towards bisphenol A electrocatalysis. Journal of Electroanalytical Chemistry, 2011, 661, 1-7.	3.8	19
380	Voltammetry and electrochemical impedance spectroscopy of gold electrodes modified with CdTe quantum dots and their conjugates with nickel tetraamino phthalocyanine. Polyhedron, 2011, 30, 2162-2170.	2.2	19
381	The Electrochemical Behavior of Gold Nanoparticleâ€₹antalum(V) Phthalocyanine Composites: Applications Towards the Electroanalysis of Bisphenol A. Electroanalysis, 2011, 23, 487-496.	2.9	19
382	Microelectrochemical patterning of gold surfaces using 4-azidobenzenediazonium and scanning electrochemical microscopy. Electrochemistry Communications, 2011, 13, 150-153.	4.7	19
383	A study on the morphology of thin copper films on para-aramid yarns and their influence on the yarn's electro-conductive and mechanical properties. Textile Reseach Journal, 2012, 82, 1587-1596.	2.2	19
384	Fluorescence "turn on―probe for bromide ion using nanoconjugates of glutathione-capped CdTe@ZnS quantum dots with nickel tetraamino-phthalocyanine: Characterization and size-dependent properties. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 265, 58-66.	3.9	19
385	Comparative phototransformation of environmental pollutants using metallophthalocyanines supported on electrospun polymer fibers. Journal of Applied Polymer Science, 2013, 128, 1131-1142.	2.6	19
386	Photodynamic antimicrobial chemotherapy activity of (5,10,15,20-tetrakis(4-(4-carboxyphenycarbonoimidoyl)phenyl)porphyrinato) chloro gallium(III). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 867-874.	3.9	19
387	Electrocatalytic Activity of Nanocomposites of Sulphur Doped Graphene Oxide and Nanosized Cobalt Phthalocyanines. Electroanalysis, 2016, 28, 3009-3018.	2.9	19
388	In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: First description of the photophysical and surface enhanced Raman scattering behaviour. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 359, 131-144.	3.9	19
389	Incorporation of metal free and Ga 5,10,15,20-tetrakis(4-bromophenyl) porphyrin into Pluronic F127-folic acid micelles. Journal of Luminescence, 2018, 194, 739-746.	3.1	19
390	A gold–chitosan composite with low symmetry zinc phthalocyanine for enhanced singlet oxygen generation and improved photodynamic therapy activity. New Journal of Chemistry, 2018, 42, 10214-10225.	2.8	19
391	Preparation of NIR absorbing axial substituted tin(<scp>iv</scp>) porphyrins and their photocytotoxic properties. MedChemComm, 2019, 10, 41-48.	3.4	19
392	Development of phthalocyanine functionalised TiO ₂ and ZnO nanofibers for photodegradation of methyl orange. New Journal of Chemistry, 2020, 44, 16340-16350.	2.8	19
393	Effect of ultrasonic frequency and power on the sonodynamic therapy activity of cationic Zn(II) phthalocyanines. Journal of Inorganic Biochemistry, 2021, 217, 111397.	3.5	19
394	Interaction of sulfur dioxide and cyanide with cobalt(II) tetrasulfophthalocyanine in aqueous media. Polyhedron, 2002, 21, 133-140.	2.2	18
395	Volcano correlations for the reactivity of surface-confined cobalt N4-macrocyclics for the electrocatalytic oxidation of 2-mercaptoacetate. Journal of Solid State Electrochemistry, 2008, 12, 473-481.	2.5	18
396	Characterization of polymeric film of a new manganese phthalocyanine complex octa-substituted with 2-diethylaminoethanethiol, and its use for the electrochemical detection of bentazon. Electrochimica Acta, 2009, 55, 37-45.	5.2	18

#	Article	IF	Citations
397	Surface properties of self-assembled monolayer films of tetra-substituted cobalt, iron and manganese alkylthio phthalocyanine complexes. Electrochimica Acta, 2010, 55, 7085-7093.	5.2	18
398	Symmetrically and unsymmetrically substituted carboxy phthalocyanines as sensitizers for nanoporous (font) ZnO (font) films. Journal of Porphyrins and Phthalocyanines, 2010, 14, 985-992.	0.8	18
399	Spectroscopic and physicochemical behavior of magnesium phthalocyanine derivatives mono-substituted with a carboxylic acid group. Journal of Molecular Structure, 2012, 1012, 31-36.	3.6	18
400	Silica nanoparticles grafted with phthalocyanines: photophysical properties and studies in artificial lysosomal fluid. New Journal of Chemistry, 2013, 37, 2800.	2.8	18
401	Physicochemical properties of zinc monoamino phthalocyanine conjugated to folic acid and single walled carbon nanotubes. Polyhedron, 2013, 60, 59-67.	2.2	18
402	Synthesis and photophysicochemical studies of a water soluble conjugate between folic acid and zinc tetraaminophthalocyanine. Journal of Luminescence, 2013, 134, 784-790.	3.1	18
403	Photocatalytic behavior of phthalocyanine-silver nanoparticle conjugates supported on polystyrene fibers. Journal of Molecular Catalysis A, 2014, 395, 34-41.	4.8	18
404	Optical properties of water-soluble l-cysteine-capped alloyed CdSeS quantum dot passivated with ZnSeTe and ZnSeTe/ZnS shells. Optical Materials, 2015, 46, 548-554.	3.6	18
405	Visible light transformation of Rhodamine 6G using tetracarbazole zinc phthalocyanine when embedded in electrospun fibers and in the presence of ZnO and Ag particles. Journal of Coordination Chemistry, 2015, 68, 1117-1131.	2.2	18
406	Fluorescence behavior and singlet oxygen generating abilities of aluminum phthalocyanine in the presence of anisotropic gold nanoparticles. Journal of Luminescence, 2015, 157, 207-214.	3.1	18
407	Electrode Modification Using Alkyne Manganese Phthalocyanine and Click Chemistry for Electrocatalysis. Electroanalysis, 2016, 28, 3019-3027.	2.9	18
408	Cu(<scp>iii</scp>)triarylcorroles with asymmetric push–pull meso-substitutions: tunable molecular electrochemically catalyzed hydrogen evolution. Dalton Transactions, 2017, 46, 6912-6920.	3.3	18
409	Electrochemical and non-linear optical behavior of a new neodymium double-decker phthalocyanine. Polyhedron, 2017, 138, 154-160.	2.2	18
410	Charting a course for chemistry. Nature Chemistry, 2019, 11, 286-294.	13.6	18
411	Thien-2-yl substituted chlorins as photosensitizers for photodynamic therapy and photodynamic antimicrobial chemotherapy. Dyes and Pigments, 2021, 185, 108886.	3.7	18
412	Photochemically induced electron transfer between sulfur dioxide and tin(IV) mono- and di-phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 98, 129-135.	3.9	17
413	Adsorptive cathodic stripping voltammetric determination of gold(III) in the presence of yeast mannan. Analytica Chimica Acta, 1999, 385, 393-399.	5.4	17
414	Synthesis and photophysical properties of octa-substituted phthalocyaninato oxotitanium(IV) derivatives. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1040-1048.	0.8	17

#	Article	IF	CITATIONS
415	UV-Visible and Electrochemical Monitoring of Carbon Monoxide Release by Donor Complexes to Myoglobin Solutions and to Electrodes Modified with Films Containing Hemin. Electroanalysis, 2006, 18, 1689-1695.	2.9	17
416	Electrochemical and photophysical characterization of non-peripherally-octaalkyl substituted dichlorotin(IV) phthalocyanine and tetrabenzotriazaporphyrin compounds. Journal of Porphyrins and Phthalocyanines, 2007, 11, 761-770.	0.8	17
417	Comparative electrooxidation of sulphite by self-assembled monolayers (SAMs) of Co(II), Fe(II), Ni(II) and Mn(III) tetrakis benzylmercapto and dodecylmercapto metallophthalocyanines complexes on gold electrodes. Talanta, 2007, 72, 691-698.	5.5	17
418	Spontaneous charge transfer between zinc tetramethyl-tetra-2,3-pyridinoporphyrazine and CdTe and ZnS quantum dots. Inorganica Chimica Acta, 2008, 361, 2950-2956.	2.4	17
419	Metallophthalocyanine Based Carbon Paste Electrodes for the Determination of 2′,3′â€Dideoxyinosine. Electroanalysis, 2009, 21, 1651-1654.	2.9	17
420	Synthesis and photophysical properties of 1,1′-binaphthol substituted phthalocyanines. Inorganica Chimica Acta, 2010, 363, 3384-3389.	2.4	17
421	Synthesis and photophysical properties of a novel zinc photosensitizer and its gold nanoparticle conjugate. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 343-350.	3.9	17
422	Syntheses and electrochemical characterization of new water soluble octaarylthiosubstituted manganese phthalocyanines. Dyes and Pigments, 2011, 89, 111-119.	3.7	17
423	The synthesis and fluorescence behaviour of new unsymmetrically mono-functionalized carboxy Ge, Ti and Sn phthalocynines. Dyes and Pigments, 2011, 91, 164-169.	3.7	17
424	In vitro photodynamic effect of aluminum tetrasulfophthalocyanines on melanoma skin cancer and healthy normal skin cells. Photodiagnosis and Photodynamic Therapy, 2012, 9, 32-39.	2.6	17
425	TD-DFT calculations and MCD spectroscopy of porphyrin and phthalocyanine analogues: rational design of photosensitizers for PDT and NIR region sensor applications. Turkish Journal of Chemistry, 2014, 38, 1013-1026.	1.2	17
426	Conjugation of mono-substituted phthalocyanine derivatives to CdSe@ZnS quantum dots and their applications as fluorescent-based sensors. Synthetic Metals, 2014, 188, 35-45.	3.9	17
427	The Photophysical Properties of Multi-Functional Quantum Dots-Magnetic Nanoparticles—Indium Octacarboxyphthalocyanine Nanocomposite. Journal of Fluorescence, 2015, 25, 199-210.	2.5	17
428	The nonlinear absorption in new lanthanide double decker pyridine-based phthalocyanines in solution and thin films. Optical Materials, 2015, 47, 211-218.	3.6	17
429	Synthesis and photophysicochemical properties of BODIPY dye functionalized gold nanorods for use in antimicrobial photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1016-1024.	0.8	17
430	Graphene Quantum Dots Functionalized with 4-Amino-2, 2, 6, 6-Tetramethylpiperidine-N-Oxide as Fluorescence "Turn-ON―Nanosensors. Journal of Fluorescence, 2016, 26, 2199-2212.	2.5	17
431	Synthesis and singlet oxygen production by a phthalocyanine when embedded in asymmetric polymer membranes. Polymer, 2016, 105, 203-213.	3.8	17
432	Synthesis and photophysical studies of asymmetric zinc phthalocyanine–magnetic nanoparticle conjugates. New Journal of Chemistry, 2017, 41, 12309-12318.	2.8	17

#	Article	IF	Citations
433	Photophysical and strong optical limiting properties of ball-type phthalocyanines dimers and their monomeric analogues. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 352, 73-85.	3.9	17
434	New difluoroboron complexes based on N,O-chelated Schiff base ligands: Synthesis, characterization, DFT calculations and photophysical and electrochemical properties. Journal of Luminescence, 2020, 224, 117262.	3.1	17
435	Solventless synthesis of nanospinel Ni _{1â^'<i>x</i>} Co _{<i>x</i>} Fe ₂ O ₄ (0 ≤i>x ≤) solid solutions for efficient electrochemical water splitting and supercapacitance. RSC Advances, 2021, 11, 31002-31014.	3.6	17
436	Electrochemical detection of dopamine using phthalocyanine-nitrogen-doped graphene quantum dot conjugates. Journal of Electroanalytical Chemistry, 2021, 886, 115111.	3.8	17
437	Positively charged styryl pyridine substituted Zn(<scp>ii</scp>) phthalocyanines for photodynamic therapy and photoantimicrobial chemotherapy: effect of the number of charges. Dalton Transactions, 2021, 50, 9129-9136.	3.3	17
438	Electrodes Modified with Monomeric M-N4 Catalysts for the Detection of Environmentally Important Molecules., 2006,, 315-361.		16
439	Photocatalytic oxidation of 1-hexene using GaPc and InPc octasubstituted derivatives. Journal of Molecular Catalysis A, 2008, 289, 9-13.	4.8	16
440	Characterization of nickel tetrahydroxy phthalocyanine complexes and the electrocatalytic oxidation of 4-chlorophenol: Correlation of theory with experiments. Inorganica Chimica Acta, 2009, 362, 5055-5063.	2.4	16
441	Study of the photophysical behavior of tetrasulfonated metallophthalocyanines in the presence of CdTe quantum dots. Polyhedron, 2009, 28, 891-896.	2.2	16
442	Synthesis and electrochemical characterisation of new tantalum (V) alkythio phthalocyanines. Inorganica Chimica Acta, 2010, 363, 3662-3669.	2.4	16
443	Synthesis, characterization, and photophysical properties of novel ball-type dinuclear and mononuclear containing four 1,1′-binaphthyl-8,8′-diol bridged metallophthalocyanines with long triplet state lifetimes. Dalton Transactions, 2011, 40, 5285.	3.3	16
444	Photocatalytic transformation of chlorophenols under homogeneous and heterogeneous conditions using palladium octadodecylthio phthalocyanine. Journal of Molecular Catalysis A, 2011, 350, 49-55.	4.8	16
445	Formation, surface characterization, and electrocatalytic application of self-assembled monolayer films of tetra-substituted manganese, iron, and cobalt benzylthio phthalocyanine complexes. Journal of Solid State Electrochemistry, 2011, 15, 2239-2251.	2.5	16
446	Synthesis and electrocatalytic behavior of cobalt (II)-tris(benzyl-mercapto)-monoaminophthalocyanine–single walled carbon nanotube nanorods. Electrochimica Acta, 2011, 56, 1995-2003.	5.2	16
447	The photophysical and energy transfer behaviour of low symmetry phthalocyanine complexes conjugated to coreshell quantum dots: an energy transfer study. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 247, 82-92.	3.9	16
448	A Comparative Study on the Sensitive Detection of Hydroxyl Radical Using Thiol-capped CdTe and CdTe/ZnS Quantum Dots. Journal of Fluorescence, 2012, 22, 1513-1519.	2.5	16
449	Photophysical behaviour of cationic 2-(dimethylamino) ethanethio tetrasubstituted phthalocyanine complexes in the presence of gold nanoparticles. Polyhedron, 2012, 38, 169-177.	2.2	16
450	Catalytic oxidation of thioanisole using oxovanadium(IV)â€functionalized electrospun polybenzimidazole nanofibers. Journal of Applied Polymer Science, 2013, 127, 4719-4725.	2.6	16

#	Article	IF	CITATIONS
451	Oxovanadium(IV)-containing poly(styrene-co- $4\hat{a}\in^2$ -ethenyl-2-hydroxyphenylimidazole) electrospun nanofibers for the catalytic oxidation of thioanisole. Journal of Molecular Catalysis A, 2013, 379, 94-102.	4.8	16
452	Fluorescence behavior of glutathione capped CdTe@ZnS quantum dots chemically coordinated to zinc octacarboxy phthalocyanines. Journal of Luminescence, 2013, 136, 255-264.	3.1	16
453	Effect of the relative humidity on the fibre morphology of polyamide 4.6 and polyamide 6.9 nanofibres. Journal of Materials Science, 2013, 48, 1746-1754.	3.7	16
454	Application of graphene quantum dots decorated with TEMPO-derivatized zinc phthalocyanine as novel nanoprobes: probing the sensitive detection of ascorbic acid. New Journal of Chemistry, 2016, 40, 8727-8736.	2.8	16
455	Enhanced nonlinear optical responses of zinc diaminopyrimidin-2-ylthio phthalocyanine conjugated to AgxAuy alloy nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329, 155-166.	3.9	16
456	Nonlinear optical response of a low symmetry phthalocyanine in the presence of gold nanoparticles when in solution or embedded in poly acrylic acid polymer thin films. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 319-320, 8-17.	3.9	16
457	Electrode Modification through Click Chemistry Using Ni and Co Alkyne Phthalocyanines for Electrocatalytic Detection of Hydrazine. Electroanalysis, 2017, 29, 1731-1740.	2.9	16
458	Photophysical and nonlinear optical study of benzothiazole substituted phthalocyanines in solution and thin films. Journal of Porphyrins and Phthalocyanines, 2017, 21, 263-272.	0.8	16
459	Exploiting Click Chemistry for the Covalent Immobilization of Tetra (4-Propargyloxyphenoxy) Metallophthalocyanines onto Phenylazide-Grafted Gold Surfaces. Electrochimica Acta, 2017, 254, 89-100.	5. 2	16
460	Graphene quantum dot-phthalocyanine polystyrene conjugate embedded in asymmetric polymer membranes for photocatalytic oxidation of 4-chlorophenol. Journal of Coordination Chemistry, 2017, 70, 3598-3618.	2.2	16
461	Electrocatalytic behaviour of surface confined pentanethio cobalt (II) binuclear phthalocyanines towards the oxidation of 4-chlorophenol. Applied Surface Science, 2017, 425, 702-712.	6.1	16
462	One-pot synthesis of graphene quantum dots–phthalocyanines supramolecular hybrid and the investigation of their photophysical properties. Journal of Materials Science, 2018, 53, 538-548.	3.7	16
463	Wood preservation with gold hydroxyapatite system. Heritage Science, 2018, 6, .	2.3	16
464	Effect of number of positive charges on the photophysical and photodynamic therapy activities of quarternary benzothiazole substituted zinc phthalocyanine. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 253-260.	3.9	16
465	Inhibition of Aluminium Corrosion Using Benzothiazole and Its Phthalocyanine Derivative. Electrocatalysis, 2019, 10, 445-458.	3.0	16
466	Spectroscopic and nonlinear optical properties of alkyl thio substituted binuclear phthalocyanines. Dyes and Pigments, 2019, 162, 249-256.	3.7	16
467	Susceptibility of Staphylococcus aureus to porphyrin-silver nanoparticle mediated photodynamic antimicrobial chemotherapy. Journal of Luminescence, 2020, 222, 117158.	3.1	16
468	Promising photodynamic antimicrobial activity of polyimine substituted zinc phthalocyanine and its polycationic derivative when conjugated to nitrogen, sulfur, co-doped graphene quantum dots against Staphylococcus aureus. Photodiagnosis and Photodynamic Therapy, 2021, 34, 102300.	2.6	16

#	Article	IF	Citations
469	Sn(IV) porphyrin-biotin decorated nitrogen doped graphene quantum dots nanohybrids for photodynamic therapy. Polyhedron, 2022, 213, 115624.	2.2	16
470	Interaction between iron(II) tetrasulfophthalocyanine and the neurotransmitters, serotonin and dopamine. Polyhedron, 2000, 19, 1355-1361.	2.2	15
471	Effect of oligomerization on the photochemical properties of silicon octaphenoxyphthalocyanine. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 142, 39-46.	3.9	15
472	Excited state dynamics of zinc and aluminum phthalocyanine carboxylates. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 68, 995-999.	3.9	15
473	Energy transfer in zinc porphyrin–phthalocyanine heterotrimer and heterononamer studied by fluorescence resonance energy transfer (FRET). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 70, 42-49.	3.9	15
474	Synthesis and solvent effects on the photophysicochemical properties of novel cadmium phenoxy phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195, 183-190.	3.9	15
475	Electrostatic self-assembly of quaternized 2,(3)-tetra(oxo-pyridine) phthalocyaninato chloroindium(III) with a series of tetrasulfonated phthalocyanines. Polyhedron, 2009, 28, 3621-3627.	2.2	15
476	The effects of point of substitution on the electrochemical behavior of new manganese phthalocyanines, tetra-substituted with diethylaminoethanethiol. Inorganica Chimica Acta, 2010, 363, 3229-3237.	2.4	15
477	Nanostructured nickel (II) phthalocyanineâ€"MWCNTs as viable nanocomposite platform for electrocatalytic detection of asulam pesticide at neutral pH conditions. Journal of Solid State Electrochemistry, 2010, 14, 1351-1358.	2.5	15
478	The synthesis and photophysical properties of peripherally and non-peripherally substituted ball-type Mg(ii) and Zn(ii) phthalocyanines. Dalton Transactions, 2011, 40, 1497.	3.3	15
479	Synthesis and electrochemical properties of new tetra substituted cobalt phthalocyanine complexes, and their application in electrode modification for the electrocatalysis of l-cysteine. Synthetic Metals, 2011, 161, 241-250.	3.9	15
480	Phototransformation of 4-nitrophenol using Pd phthalocyanines supported on single walled carbon nanotubes. Journal of Molecular Catalysis A, 2011, 337, 68-76.	4.8	15
481	Physico-chemical properties of lutetium phthalocyanine complexes in solution and in solid polystyrene polymer fibers and their application in photoconversion of 4-nitrophenol. Journal of Molecular Catalysis A, 2012, 358, 49-57.	4.8	15
482	Effects of gold nanoparticle shape on the aggregation and fluorescence behaviour of water soluble zinc phthalocyanines. New Journal of Chemistry, 2013, 37, 1950.	2.8	15
483	Optical Limiting Analysis of Phthalocyanines in Polymer Thin Films. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 110-120.	2.2	15
484	Photophysical and photochemical properties and TD-DFT calculations of novel zinc and platinum phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 277, 102-110.	3.9	15
485	Photophysicochemical behavior and antimicrobial activity of dihydroxosilicon tris(diaquaplatinum)octacarboxyphthalocyanine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 125, 147-153.	3.9	15
486	Development of Graphene/CdSe Quantum Dotsâ€Co Phthalocyanine Nanocomposite for Oxygen Reduction Reaction. Electroanalysis, 2014, 26, 2261-2272.	2.9	15

#	Article	IF	CITATIONS
487	Synthesis and photophysical properties of nanocomposites of aluminum tetrasulfonated phthalocyanine covalently linked to glutathione capped CdTe/CdS/ZnS quantum dots. Synthetic Metals, 2015, 205, 212-221.	3.9	15
488	(Ferrocenylpyrazolyl)zinc(II) benzoates as catalysts for the ring opening polymerization of $\hat{l}\mu\text{-caprolactone}.$ Polyhedron, 2015, 90, 154-164.	2.2	15
489	Physicochemical behavior of nanohybrids of mono and tetra substituted carboxyphenoxy phthalocyanine covalently linked to GSH–CdTe/CdS/ZnS quantum dots. Polyhedron, 2015, 87, 8-16.	2.2	15
490	Characterization and Electrocatalytic Activity of Nanocomposites Consisting of Nanosized Cobalt Tetraaminophenoxy Phthalocyanine, Multiâ€walled Carbon Nanotubes and Gold Nanoparticles. Electroanalysis, 2016, 28, 1478-1488.	2.9	15
491	Fluorescence properties of alloyed ZnSeS quantum dots overcoated with ZnTe and ZnTe/ZnS shells. Optical Materials, 2016, 54, 104-110.	3.6	15
492	Nonlinear optical behavior of neodymium mono- and bi-nuclear phthalocyanines linked to zinc oxide nanoparticles and incorporated into poly acrylic acid. Polyhedron, 2016, 105, 159-169.	2.2	15
493	Photophysicochemical properties and in vitro cytotoxicity of zinc tetracarboxyphenoxy phthalocyanine – quantum dot nanocomposites. Polyhedron, 2016, 106, 92-100.	2.2	15
494	Azide-derivatized gold nanosphere "clicked―to indium and zinc phthalocyanines for improved nonlinear optical limiting. Journal of Molecular Structure, 2017, 1136, 309-320.	3.6	15
495	Evaluation of the photophysicochemical properties and photodynamic therapy activity of nanoconjugates of zinc phthalocyanine linked to glutathione capped Au and Au 3 Ag 1 nanoparticles. Dyes and Pigments, 2018, 150, 139-150.	3.7	15
496	Spectroscopic characterization and photodynamic antimicrobial chemotherapy of phthalocyanine-silver triangular nanoprism conjugates when supported on asymmetric polymer membranes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 219, 333-345.	3.9	15
497	Bioelectrocatalysis and surface analysis of gold coated with nickel oxide/hydroxide and glucose oxidase towards detection of glucose. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110981.	5.0	15
498	The effects of the composition and structure of quantum dots combined with cobalt phthalocyanine and an aptamer on the electrochemical detection of prostate specific antigen. Dyes and Pigments, 2021, 192, 109407.	3.7	15
499	Aptamer versus antibody as probes for the impedimetric biosensor for human epidermal growth factor receptor. Journal of Inorganic Biochemistry, 2022, 230, 111764.	3.5	15
500	Cyclic voltammetric studies of hafnium and zirconium phthalocyanines. Synthetic Metals, 1994, 66, 107-116.	3.9	14
501	Cyclic voltammetry and spectroelectrochemistry of osmium phthalocyanines in aqueous and non-aqueous solvents. Polyhedron, 1996, 15, 2901-2908.	2.2	14
502	Photosensitization reactions of neodymium, dysprosium and lutetium diphthalocyanine. Polyhedron, 1997, 16, 2971-2978.	2.2	14
503	Spectroscopic studies of the interaction of cobalt(II) N,N',N″,N‴-tetramethyltetra-3,4-pyridinoporphyrazine with amino acids and nitrogen oxides. Journal of Porphyrins and Phthalocyanines, 2001, 05, 839-845.	0.8	14
504	Photochemical studies of binuclear phenoxysubstituted phthalocyanines containing catecholate bridges. Journal of Porphyrins and Phthalocyanines, 2003, 07, 167-175.	0.8	14

#	Article	IF	Citations
505	Porphyrin Nanorods Modified Glassy Carbon Electrode for the Electrocatalysis of Dioxygen, Methanol and Hydrazine. Electroanalysis, 2011, 23, 1699-1708.	2.9	14
506	Photocatalytic behaviour of tantalum (V) phthalocyanines in the presence of gold nanoparticles towards the oxidation of cyclohexene. Journal of Molecular Catalysis A, 2011, 335, 121-128.	4.8	14
507	The syntheses and photophysical properties of $4,4\hat{a}\in^2$ -isopropylidendioxydiphenyl substituted ball-type dinuclear Mg(II) and Zn(II) phthalocyanines. Polyhedron, 2012, 31, 704-709.	2.2	14
508	The synthesis and characterisation of magnetic nanoparticles and their interaction with a zinc phthalocyanine. Inorganic Chemistry Communication, 2013, 29, 60-64.	3.9	14
509	Poly methyl methacrylate films containing metallophthalocyanines in the presence of CdTe quantum dots: Non-linear optical behaviour and triplet state lifetimes. Journal of Molecular Structure, 2013, 1054-1055, 209-214.	3.6	14
510	Effects of pyrene on the photophysical and two-photon absorption-based nonlinear optical properties of indium(III) phthalocyanines. Journal of Coordination Chemistry, 2014, 67, 2911-2924.	2.2	14
511	The influence of gold nanoparticles on the electroactivity of nickel tetrasulfonated phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2014, 18, 642-651.	0.8	14
512	Effects of Redox Mediators on the Catalytic Activity of Iron Porphyrins towards Oxygen Reduction in Acidic Media. ChemElectroChem, 2014, 1, 1508-1515.	3.4	14
513	Photophysical studies of newly derivatized mono substituted phthalocyanines grafted onto silica nanoparticles via click chemistry. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 140, 256-264.	3.9	14
514	Mercaptopyridine-substituted indium, zinc, and metal-free phthalocyanines: nonlinear optical studies in solution and on polymer matrices. Journal of Coordination Chemistry, 2015, 68, 3727-3740.	2.2	14
515	Enhanced optical limiting behaviour of indium phthalocyanine derivatives when in solution or embedded in poly(acrylic acid) or poly(methyl methacrylate) polymers. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 303-304, 44-52.	3.9	14
516	Synthesis, Characterization, and Electronic Structures of Porphyrins Fused with Polycyclic Aromatic Ring Systems. Chemistry - A European Journal, 2016, 22, 14730-14738.	3.3	14
517	Effects of pluronic silica nanoparticles on the photophysical and photodynamic therapy behavior of triphenyl-p-phenoxy benzoic acid metalloporphyrins. Journal of Coordination Chemistry, 2016, 69, 3491-3506.	2.2	14
518	Nonlinear Interactions of Zinc Phthalocyanine-Graphene Quantum Dots Nanocomposites: Investigation of Effects of Surface Functionalization with Heteroatoms. Journal of Fluorescence, 2017, 27, 755-766.	2.5	14
519	Nanocomposites of sulphur-nitrogen co-doped graphene oxide nanosheets and cobalt mono carboxyphenoxy phthalocyanines for facile electrocatalysis. Journal of Electroanalytical Chemistry, 2017, 791, 36-48.	3.8	14
520	The photophysical studies of Pluronic F127/P123 micelle mixture system loaded with metal free and Zn 5,10,15,20-tetrakis[4-(benzyloxy) phenyl]porphyrins. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 339, 49-58.	3.9	14
521	Photophysicochemical behaviour of metallophthalocyanines when doped onto silica nanoparticles. Dyes and Pigments, 2017, 136, 262-272.	3.7	14
522	Photophysical and optical limiting properties at 532 nm of BODIPY dyes with <i>p</i> benzyloxystyryl groups at the 3,5-positions. Journal of Porphyrins and Phthalocyanines, 2018, 22, 413-422.	0.8	14

#	Article	IF	Citations
523	Effect of bromination on the optical limiting properties at 532â€nm of BODIPY dyes with p-benzyloxystyryl groups at the 3,5-positions. Journal of Molecular Structure, 2019, 1175, 745-753.	3.6	14
524	Enhanced photo-ablation effect of positively charged phthalocyanines-detonation nanodiamonds nanoplatforms for the suppression of Staphylococcus aureus and Escherichia coli planktonic cells and biofilms. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 411, 113200.	3.9	14
525	Turn-on detection of cysteine by a donor-acceptor type quinoline fluorophore: Exploring the sensing strategy and performance in bioimaging. Dyes and Pigments, 2021, 193, 109556.	3.7	14
526	Folic acid-modified phthalocyanine-nanozyme loaded liposomes for targeted photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2021, 36, 102527.	2.6	14
527	Light-driven antimicrobial therapy of palladium porphyrins and their chitosan immobilization derivatives and their photophysical-chemical properties. Dyes and Pigments, 2022, 203, 110313.	3.7	14
528	Interaction of cyanide with iron(II) phthalocyanine: kinetics and equilibria. Journal of the Chemical Society Dalton Transactions, 1993, , 3601.	1.1	13
529	Electrooxidation of cresols on carbon electrodes modified with phthalocyaninato and octabutoxyphthalocyaninato cobalt(II) complexes. Analytica Chimica Acta, 2001, 432, 49-57.	5.4	13
530	Determination of 2′,3′â€Dideoxyinosine Using Iron (II) Phthalocyanine Modified Carbon Paste Electrode. Analytical Letters, 2004, 37, 2641-2648.	1.8	13
531	An investigation of the behavior of quaternized peripherally tetra mercaptopyridine substituted metallophthalocyanines in the presence of quantum dots. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 215, 196-204.	3.9	13
532	Interaction between nickel hydroxy phthalocyanine derivatives with p-chlorophenol: Linking electrochemistry experiments with theory. Electrochimica Acta, 2010, 56, 706-716.	5.2	13
533	Electrooxidation of Chlorophenols Catalyzed by Nickel Octadecylphthalocyanine Adsorbed on Singleâ€Walled Carbon Nanotubes. Electroanalysis, 2011, 23, 1901-1911.	2.9	13
534	Synthesis and photophysical behaviour of tantalum and titanium phthalocyanines in the presence of gold nanoparticles: Photocatalysis towards the oxidation of cyclohexene. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 38-46.	3.9	13
535	Gallium Phthalocyanine Photosensitizers: Carboxylation Enhances the Cellular Uptake and Improves the Photodynamic Therapy of Cancers. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 604-610.	1.7	13
536	4-Azidoaniline-based electropolymer as a building block for functionalisation of conductive surfaces. Journal of Electroanalytical Chemistry, 2012, 670, 79-84.	3.8	13
537	Layer by Layer Electrode Surface Functionalisation Using Carbon Nanotubes, Electrochemical Grafting of Azideâ€Alkyne Functions and Click Chemistry. Electroanalysis, 2012, 24, 1833-1838.	2.9	13
538	Photophysics and photochemistry of octaglucosylated zinc phthalocyanine derivatives. Journal of Porphyrins and Phthalocyanines, 2012, 16, 413-422.	0.8	13
539	The synthesis, photophysical and dielectric properties of ball-type dinuclear zinc phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2012, 16, 826-832.	0.8	13
540	Unquenched fluorescence lifetime for \hat{l}^2 -phenylthio substituted zinc phthalocyanine upon conjugation to gold nanoparticles. Polyhedron, 2012, 34, 114-120.	2.2	13

#	Article	IF	CITATIONS
541	The photophysical and photochemical behaviour of coumarin-derivatized zinc phthalocyanine when conjugated with gold nanoparticles and electrospun into polymer fibers. New Journal of Chemistry, 2013, 37, 679-689.	2.8	13
542	Polyamide nanofiber membranes functionalized with zinc phthalocyanines. Journal of Applied Polymer Science, 2014, 131, .	2.6	13
543	Photophysichochemical behavior of carbazole derivatized zinc phthalocyanine in the presence of ZnO microparticles and when embedded in electrospun fibers. Dyes and Pigments, 2014, 104, 57-66.	3.7	13
544	Photophysical properties of a new water soluble tetra thiamine substituted zinc phthalocyanine conjugated to gold nanorods of different aspect ratios. Dalton Transactions, 2014, 43, 8230.	3.3	13
545	Behavior of Palladium Nanoparticles in the Absence or Presence of Cobalt Tetraaminophthalocyanine for the Electrooxidation of Hydrazine. Electroanalysis, 2014, 26, 1068-1077.	2.9	13
546	Electrocatalytic behahiour of cobalt tetraamino-phthalocyanine in the presence of a composite of reduced graphene nanosheets and of multi-walled carbon nanotubes. Electrochimica Acta, 2014, 136, 240-249.	5.2	13
547	Corrole–BODIPY conjugates: enhancing the fluorescence and phosphorescence of the corrole complex via efficient through bond energy transfer. RSC Advances, 2015, 5, 50962-50967.	3.6	13
548	Efficient energy transfer in ethynyl bridged corrole–BODIPY dyads. RSC Advances, 2016, 6, 72852-72858.	3.6	13
549	Solvent Effect on the Third-Order Nonlinear Optical Properties of α- and β-Tertbutyl Phenoxy-Substituted Tin(IV) Chloride Phthalocyanines. Journal of Physical Chemistry A, 2017, 121, 7165-7175.	2.5	13
550	The effect of point of substitution and silver based nanoparticles on the photophysical and optical nonlinearity of indium carboxyphenoxy phthalocyanine. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 347, 146-159.	3.9	13
551	Porphyrin dimers with a bridging chiral amide-bonded benzo-moiety: Influence of positional isomerism on the molecular chirality. Dyes and Pigments, 2018, 154, 229-233.	3.7	13
552	Physicochemical properties of water soluble unsymmetrical phthalocyanine-folic acid conjugates. Dyes and Pigments, 2018, 149, 393-398.	3.7	13
553	Click chemistry electrode modification using 4-ethynylbenzyl substituted cobalt phthalocyanine for applications in electrocatalysis. Journal of Coordination Chemistry, 2018, 71, 1623-1638.	2.2	13
554	Evaluation of the photosensitizing properties of zinc and indium tetra cinnamic acid phthalocyanines linked to magnetic nanoparticles on human breast adenocarcinoma cells. Journal of Luminescence, 2019, 205, 385-392.	3.1	13
555	Photophysicochemical behaviour of phenoxy propanoic acid functionalised zinc phthalocyanines when grafted onto iron oxide and silica nanoparticles: Effects in photodynamic antimicrobial chemotherapy. Journal of Luminescence, 2021, 234, 117939.	3.1	13
556	Fabrication of dye-sensitized solar cells based on push-pull asymmetrical substituted zinc and copper phthalocyanines and reduced graphene oxide nanosheets. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 399, 112612.	3.9	13
557	Photodynamic Therapy Activity of Phthalocyanine-Silver Nanoparticles on Melanoma Cancer Cells. Journal of Nanoscience and Nanotechnology, 2020, 20, 3097-3104.	0.9	13
558	Redox reactions of an Mo(V) tetrasulfophthalocyanine. Inorganica Chimica Acta, 1994, 215, 27-32.	2.4	12

#	Article	IF	Citations
559	Electrochemical and catalytic properties of chromium tetraaminophthalocyanine. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 2004, 573, 77-85.	0.1	12
560	Electroanalysis of thiocyanate using a novel glassy carbon electrode modified by aryl radicals and cobalt tetracarboxyphthalocyanine. Electrochimica Acta, 2007, 53, 480-486.	5.2	12
561	The syntheses, characterization and fluorescence spectra of novel, octakis(alkylthiophthalocyanato) nickel(II) and palladium(II) complexes. Dyes and Pigments, 2009, 82, 422-426.	3.7	12
562	The determination of the photosensitizing properties of mercapto substituted phthalocyanine derivatives in the presence of quantum dots capped with mercaptopropionic acid. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 218, 101-110.	3.9	12
563	Synthesis and photophysical properties of peripherally and non-peripherally mercaptopyridine substituted metal free, Mg(II) and Al(III) phthalocyanines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 95, 407-413.	3.9	12
564	The development of novel nickel selective amine extractants: 2,2′-Pyridylimidazole functionalised chelating resin. Minerals Engineering, 2013, 54, 88-93.	4.3	12
565	Effects of differently shaped silver nanoparticles on the photophysics of pyridylsulfanyl-substituted phthalocyanines. Polyhedron, 2015, 99, 112-121.	2.2	12
566	Effects of ZnO nanohexagons and nanorods on the fluorescence behavior of metallophthalocyanines. Polyhedron, 2015, 85, 476-481.	2.2	12
567	Comparative studies on photophysical and optical limiting characterizations of low symmetry phthalocyanine linked to Fe ₃ O ₄ –Ag core–shell or hybrid nanoparticles. New Journal of Chemistry, 2016, 40, 10016-10027.	2.8	12
568	Optical limiting response of multi-walled carbon nanotube-phthalocyanine nanocomposite in solution and when in poly (acrylic acid). Journal of Molecular Structure, 2016, 1117, 140-146.	3.6	12
569	Characterization and physicochemical studies of the conjugates of graphene quantum dots with differently charged zinc phthalocyanines. Journal of Coordination Chemistry, 2017, 70, 3308-3324.	2.2	12
570	Highly efficient C Cl bond cleavage and unprecedented C C bond cleavage of environmentally toxic DDT through molecular electrochemical catalysis. Applied Catalysis A: General, 2017, 545, 44-53.	4.3	12
571	Photophysical studies of 2,6-dibrominated BODIPY dyes substituted with 4-benzyloxystyryl substituents. Journal of Porphyrins and Phthalocyanines, 2017, 21, 431-438.	0.8	12
572	Photo-induced resonance energy transfer and nonlinear optical response in ball-type phthalocyanine conjugated to semiconductor and graphene quantum dots. New Journal of Chemistry, 2018, 42, 6040-6050.	2.8	12
573	Photophysical and enhanced nonlinear optical response in asymmetric benzothiazole substituted phthalocyanine covalently linked to semiconductor quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 204, 629-639.	3.9	12
574	An optical limiting study in aminophenoxy substituted phthalocyanine in the presence of semiconductor quantum dots. Journal of Luminescence, 2018, 203, 247-256.	3.1	12
575	Electrocatalytic activity of ethynylbenzyl phthalocyanines when linked to quantum dots via click chemistry: Towards efficient oxygen reduction reaction and H2O2 oxidation. Journal of Electroanalytical Chemistry, 2019, 840, 218-229.	3.8	12
576	A 3,5â€DistyrylBODIPY Dye Functionalized with Boronic Acid Groups for Direct Electrochemical Glucose Sensing. Electroanalysis, 2019, 31, 137-145.	2.9	12

#	Article	IF	CITATIONS
577	The photo-physicochemical properties and in vitro photodynamic therapy activity of differently substituted-zinc (II)-phthalocyanines and graphene quantum dots conjugates on MCF7 breast cancer cell line. Inorganica Chimica Acta, 2019, 488, 304-311.	2.4	12
578	Synthesis of Novel Schiff Base Cobalt (II) and Iron (III) Complexes as Cathode Catalysts for Microbial Fuel Cell Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1110-1120.	3.7	12
579	The photodynamic antimicrobial chemotherapy of Stapphylococcus aureus using an asymmetrical zinc phthalocyanine conjugated to silver and iron oxide based nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 402, 112813.	3.9	12
580	A comparative study of the photophysicochemical and photodynamic activity properties of <i>meso</i> -4-methylthiophenyl functionalized Sn(IV) tetraarylporphyrins and triarylcorroles. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1138-1145.	0.8	12
581	Optical limiting properties, structure and simplified TD-DFT calculations of scandium tetra-15-crown-5 phthalocyaninates. Journal of Porphyrins and Phthalocyanines, 2020, 24, 589-601.	0.8	12
582	The antibody assisted detection of HER2 on a cobalt porphyrin binuclear framework and gold functionalized graphene quantum dots modified electrode. Journal of Electroanalytical Chemistry, 2021, 880, 114908.	3.8	12
583	Visible light responsive TiO2 - graphene oxide nanosheets - Zn phthalocyanine ternary heterojunction assisted photoelectrocatalytic degradation of Orange G. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 414, 113291.	3.9	12
584	Ball-type phthalocyanines and reduced graphene oxide nanoparticles as separate and combined corrosion inhibitors of aluminium in HCl. Journal of Molecular Structure, 2021, 1236, 130279.	3.6	12
585	The photodynamic activities of the gold nanoparticle conjugates of phosphorus(V) and gallium(III) A3 meso-triarylcorroles. Dyes and Pigments, 2021, 194, 109631.	3.7	12
586	Electrochemical detection of human epidermal growth factor receptor 2 using an aptamer on cobalt phthalocyanines – Cerium oxide nanoparticle conjugate. Bioelectrochemistry, 2022, 146, 108146.	4.6	12
587	Spectroelectrochemical studies of tin(IV) diphthalocyanine. Polyhedron, 1996, 15, 867-872.	2.2	11
588	Voltammetric Studies of Spinach Ferredoxin on a Glassy Carbon Electrode Modified with Cobalt(II) Tetrasulfophthalocyanine. Electroanalysis, 1998, 10, 988-993.	2.9	11
589	Palladium(II) and Platinum(II) Tetramethyltetrapyridinoporphyrazine Complexes: Redox Properties and Interactions with Cysteine and Histidine. Journal of Porphyrins and Phthalocyanines, 1999, 03, 477-487.	0.8	11
590	Construction and characterization of carbon paste ultra-microelectrodes. Electrochemistry Communications, 2001, 3, 524-528.	4.7	11
591	Electropolymerizable iron (III) and cobalt (II) dicyanophenoxy tetraphenylporphyrin complexes: Potential electrocatalysts. Inorganic Chemistry Communication, 2006, 9, 223-227.	3.9	11
592	Syntheses, electrochemical and spectroelectrochemical properties of novel ball-type and mononuclear Co(II) phthalocyanines substituted at the peripheral and non-peripheral positions with binaphthol groups. Polyhedron, 2011, 30, 508-514.	2.2	11
593	Synthesis and electrochemical behavior of novel peripherally and non-peripherally substituted ball-type cobalt phthalocyanine complexes. Polyhedron, 2011, 30, 522-528.	2.2	11
594	Schottky barrier diode parameters of Ag/MgPc/p-Si structure. Journal of Porphyrins and Phthalocyanines, 2012, 16, 855-860.	0.8	11

#	Article	IF	CITATIONS
595	Facile deposition of gold nanoparticle thin films on semi-permeable cellulose substrate. Materials Letters, 2012, 88, 132-135.	2.6	11
596	MCD spectroscopy and TD-DFT calculations of a naphthalene-ring-bridged coplanar binuclear phthalocyanine dimer. Journal of Porphyrins and Phthalocyanines, 2013, 17, 489-500.	0.8	11
597	The use of phthalocyanines in cancer therapy. AIP Conference Proceedings, 2013, , .	0.4	11
598	Unsymmetrically Substituted Nickel Triazatetra-Benzcorrole and Phthalocynanine Complexes: Conjugation to Quantum Dots and Applications as Fluorescent "Turn ON―Sensors. Journal of Fluorescence, 2014, 24, 481-491.	2.5	11
599	lodineâ€Doped Cobalt Phthalocyanine Supported on Multiwalled Carbon Nanotubes for Electrocatalysis of Oxygen Reduction Reaction. Electroanalysis, 2015, 27, 1176-1187.	2.9	11
600	Synthesis, photophysical and nonlinear optical behavior of neodymium based trisphthalocyanine. Inorganica Chimica Acta, 2015, 426, 221-226.	2.4	11
601	Nonlinear optical behavior of alkyne terminated phthalocyanines in solution and when embedded in polysulfone as thin films: Effects of aggregation. Optical Materials, 2016, 51, 194-202.	3.6	11
602	Photophysical properties of GaCl 5,10,15,20-tetra(1-pyrenyl)porphyrinato incorporated into Pluronic F127 micelle. Journal of Luminescence, 2017, 185, 34-41.	3.1	11
603	Graphene quantum dots coordinated to mercaptopyridine-substituted phthalocyanines: Characterization and application as fluorescence "turn ON―nanoprobes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 174, 339-347.	3.9	11
604	Characterization of phthalocyanine functionalized quantum dots by dynamic light scattering, laser Doppler, and capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2017, 409, 1707-1715.	3.7	11
605	4-Bis(4-aminophenoxy)phenoxy derivitized phthalocyanine conjugated to metallic nanoparticles: searching for enhanced optical limiting materials. New Journal of Chemistry, 2017, 41, 14351-14363.	2.8	11
606	Nanosecond optical nonlinearities in low symmetry phthalocyanine nanoconjugates studied using the Z-scan technique. Journal of Luminescence, 2017, 192, 1167-1179.	3.1	11
607	Singlet Oxygen Generating Properties of Different Sizes of Charged Graphene Quantum Dot Nanoconjugates with a Positively Charged Phthalocyanine. Journal of Fluorescence, 2018, 28, 827-838.	2.5	11
608	Magnetic nanoparticle - indium phthalocyanine conjugate embedded in electrospun fiber for photodynamic antimicrobial chemotherapy and photodegradation of methyl red. Heliyon, 2019, 5, e02352.	3.2	11
609	Synthesis and pharmacological evaluation of chlorin derivatives for photodynamic therapy of cholangiocarcinoma. European Journal of Medicinal Chemistry, 2020, 189, 112049.	5 . 5	11
610	A search for enhanced photodynamic activity against Staphylococcus aureus planktonic cells and biofilms: the evaluation of phthalocyanine–detonation nanodiamond–Ag nanoconjugates. Photochemical and Photobiological Sciences, 2020, 19, 1442-1454.	2.9	11
611	A heavy-atom-free ï€-extended N-confused porphyrin as a photosensitizer for photodynamic therapy. New Journal of Chemistry, 2021, 45, 5654-5658.	2.8	11
612	Enhanced Photodynamic inactivation of Staphylococcus Aureus with Schiff base substituted Zinc phthalocyanines through conjugation to silver nanoparticles. Journal of Molecular Structure, 2021, 1232, 130012.	3.6	11

#	Article	IF	CITATIONS
613	Aluminum corrosion retardation properties of acetamidophenoxy phthalocyanines: Effect of central metal. Journal of Molecular Structure, 2021, 1242, 130806.	3.6	11
614	Photo-sonodynamic combination activity of cationic morpholino-phthalocyanines conjugated to nitrogen and nitrogen-sulfur doped graphene quantum dots against MCF-7 breast cancer cell line in vitro. Photodiagnosis and Photodynamic Therapy, 2021, 36, 102573.	2.6	11
615	Novel cationic-chalcone phthalocyanines for photodynamic therapy eradication of S. aureus and E. coli bacterial biofilms and MCF-7 breast cancer. Photodiagnosis and Photodynamic Therapy, 2022, 38, 102863.	2.6	11
616	Photooxidation of Phthalocyanines. ACS Symposium Series, 1986, , 309-327.	0.5	10
617	Immobilization of tetra-amine substituted metallophthalocyanines at gold surfaces modified with mercaptopropionic acid or DTSP-SAMs. Electrochimica Acta, 2007, 52, 2024-2031.	5.2	10
618	Synthesis and Photophysical Properties of Tetra- and Octasubstituted Phosphorous Oxide Triazatetrabenzcorrole Photosensitizers. Metal-Based Drugs, 2008, 2008, 1-9.	3.8	10
619	Photophysical and photochemical parameters of octakis (benzylthio) phthalocyaninato zinc, aluminium and tin: Red shift index concept in solvent effect on the ground state absorption of zinc phthalocyanine derivatives. Journal of Molecular Structure, 2010, 984, 1-14.	3.6	10
620	Spectroscopic behavior of cationic metallophthalocyanines in the presence of anionic quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 411-416.	3.9	10
621	PHOTOPHYSICAL BEHAVIOR OF FLUORESCENT NANOCOMPOSITES OF PHTHALOCYANINE LINKED TO QUANTUM DOTS AND MAGNETIC NANOPARTICLES. International Journal of Nanoscience, 2012, 11, 1250018.	0.7	10
622	CdTe quantum dots functionalized with 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide as luminescent nanoprobe for the sensitive recognition of bromide ion. Analytica Chimica Acta, 2012, 721, 154-161.	5.4	10
623	Synthesis and photophysicochemical properties of novel zinc phthalocyanines mono substituted with carboxyl containing functional groups. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 250, 18-24.	3.9	10
624	Single walled carbon nanotubes functionalized with nickel phthalocyanines: effects of point of substitution and nature of functionalization on the electro-oxidation of 4-chlorophenol. Journal of Porphyrins and Phthalocyanines, 2012, 16, 130-139.	0.8	10
625	Effects of number of ring substituents on the physicochemical properties of zinc aminophenoxy phthalocyanine-single walled carbon nanotube conjugate. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 274, 83-90.	3.9	10
626	Facile synthesis, spectroscopic and electrochemical properties, and theoretical calculations of porphyrin dimers with a bridging amide-bonded xanthene moiety. Journal of Porphyrins and Phthalocyanines, 2015, 19, 819-829.	0.8	10
627	Optical properties and electronic structures of axially-ligated group 9 porphyrins. Journal of Porphyrins and Phthalocyanines, 2015, 19, 973-982.	0.8	10
628	Photophysical properties gallium octacarboxy phthalocyanines conjugated to CdSe@ZnS quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 397-404.	3.9	10
629	The optical limiting of blue and green ytterbium double-decker phthalocyanines in solution and in poly(acrylic acid) as thin films. Inorganica Chimica Acta, 2016, 450, 87-91.	2.4	10
630	Effects of symmetry and the number of positive charges on the photocatalytic activity of indium phthalocyanines when embedded in electrospun fibers. Inorganica Chimica Acta, 2017, 458, 50-57.	2.4	10

#	Article	IF	CITATIONS
631	Photophysicochemical behaviour of anionic indium phthalocyanine when grafted onto AgxAuy and porous silica nanoparticles. Journal of Luminescence, 2017, 190, 353-363.	3.1	10
632	Photophysical and optical limiting properties of a novel distyryl-BODIPY with fused crown ether moieties. Journal of Porphyrins and Phthalocyanines, 2017, 21, 832-843.	0.8	10
633	Novel nano-dyad of homoleptic sandwich-type phthalocyanines with nitrogen doped graphene quantum dots for nonlinear optics. New Journal of Chemistry, 2018, 42, 10124-10133.	2.8	10
634	The effect of the cobalt and manganese central metal ions on the nonlinear optical properties of tetra (4-propargyloxyphenoxy) phthalocyanines. New Journal of Chemistry, 2018, 42, 9857-9864.	2.8	10
635	Electrochemical Detection of 4â€Chlorophenol Using Glassy Carbon Electrodes Modified with Thulium Doubleâ€Decker Phthalocyanine Salts. ChemistrySelect, 2019, 4, 8434-8443.	1.5	10
636	Optical limiting properties of BODIPY dyes substituted with styryl or vinylene groups on the nanosecond timescale. Journal of Porphyrins and Phthalocyanines, 2019, 23, 701-717.	0.8	10
637	Optical Limiting and Femtosecond Pump-Probe Transient Absorbance Properties of a 3,5-distyrylBODIPY Dye. Frontiers in Chemistry, 2019, 7, 740.	3. 6	10
638	Photophysicochemical and photodynamic therapy properties of metallophthalocyanines linked to gold speckled silica nanoparticles. Photodiagnosis and Photodynamic Therapy, 2019, 25, 325-333.	2.6	10
639	Fabrication of efficient nonlinear optical absorber using Zn phthalocyanine-semiconductor quantum dots conjugates. Polyhedron, 2019, 159, 102-115.	2.2	10
640	Direct nonlinear optical absorption measurements of asymmetrical zinc(II) phthalocyanine when covalently linked to semiconductor quantum dots. Journal of Molecular Structure, 2020, 1220, 128729.	3.6	10
641	Amphiphilic axially modified cationic indium-porphyrins linked to hydrophilic magnetic nanoparticles for photodynamic antimicrobial chemotherapy against gram-negative strain; Escherichia coli. Dyes and Pigments, 2021, 192, 109262.	3.7	10
642	Electrocatalytic activity of Schiff base containing copper phthalocyanines towards the detection of catechol: Effect of heteroatoms and asymmetry. Polyhedron, 2021, 210, 115518.	2.2	10
643	Impedimetric aptasensor for HER2 biomarker using graphene quantum dots, polypyrrole and cobalt phthalocyanine modified electrodes. Sensing and Bio-Sensing Research, 2021, , 100467.	4.2	10
644	Time-dependent characterization of graphene quantum dots and graphitic carbon nitride quantum dots synthesized by hydrothermal methods. Diamond and Related Materials, 2022, 121, 108751.	3.9	10
645	Design and fabrication of electrochemical sensor based on molecularly imprinted polymer loaded onto silver nanoparticles for the detection of ⟨scp⟩17â€Î²â€estradiol⟨ scp⟩. Journal of Molecular Recognition, 2022, 35, .	2.1	10
646	Photoreduction of tin(IV) phthalocyanines. Polyhedron, 1994, 13, 2067-2071.	2.2	9
647	Melatonin generates singlet oxygen on laser irradiation but acts as a quencher when irradiated by lamp photolysis. Journal of Pineal Research, 2005, 38, 153-156.	7.4	9
648	Photochemical and photophysical properties of pentoxy- and naphthaloxy appended magnesium and zinc phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2005, 09, 343-351.	0.8	9

#	Article	IF	CITATIONS
649	Spectroscopic characterisation and interactions of sulfonated titanium and tantalum phthalocyanines with methyl viologen. Inorganica Chimica Acta, 2007, 360, 2615-2622.	2.4	9
650	Characterization of manganese tetraarylthiosubstituted phthalocyanines self assembled monolayers. Electrochimica Acta, 2009, 54, 5557-5565.	5.2	9
651	Electrochemical, spectroscopic and microscopic studies of new manganese phthalocyanine complexes in solution and as self-assembled monolayers on gold. Journal of Porphyrins and Phthalocyanines, 2010, 14, 568-581.	0.8	9
652	Introducing Chemistry Students to the "Real World―of Chemistry. Journal of Chemical Education, 2010, 87, 500-503.	2.3	9
653	Synthesis and photophysical studies of monocarboxy phthalocyanines containing quaternizable groups. Polyhedron, 2011, 30, 2733-2739.	2.2	9
654	Synthesis, characterization and photodynamic therapy properties of an octa-4-tert-butylphenoxy-substituted phosphorus(V) triazatetrabenzcorrole. Journal of Porphyrins and Phthalocyanines, 2014, 18, 698-707.	0.8	9
655	Optical limiting and singlet oxygen generation properties of phosphorus triazatetrabenzcorroles. Journal of Porphyrins and Phthalocyanines, 2015, 19, 192-204.	0.8	9
656	Lipophilic M(α,α′-OC ₅ H ₁₁) ₈ phthalocyanines (M = H ₂ an reductions. Dalton Transactions, 2015, 44, 18237-18246.	d) Tj ETQq 3.3	0 0 0 rgBT /0 9
657	A comparative physicochemical study of unsymmetrical indium phthalocyanines in the presence of magnetic nanoparticles or quantum dots. Journal of Coordination Chemistry, 2016, 69, 1050-1065.	2.2	9
658	Effects of covalent versus non-covalent interactions on the electrocatalytic behavior of tetracarboxyphenoxyphthalocyanine in the presence of multi-walled carbon nanotubes. Journal of Coordination Chemistry, 2017, 70, 1585-1600.	2.2	9
659	Electronic structure and NH-tautomerism of a novel metal-free phenanthroline-annelated phthalocyanine. Dyes and Pigments, 2017, 140, 469-479.	3.7	9
660	Core-modified rubyrins with phenanthrene-fused pyrrole rings: Highly selective and tunable response to Hg2+ ions. Dyes and Pigments, 2018, 158, 188-194.	3.7	9
661	The Primary Demonstration of Exciton Coupling Effects on Optical Limiting Properties of Blue Doubleâ€Decker Lanthanide Phthalocyanine Salts. ChemistrySelect, 2018, 3, 6671-6682.	1.5	9
662	Nonlinear optical behavior of n-tuple decker phthalocyanines at the nanosecond regime: investigation of change in mechanisms. RSC Advances, 2019, 9, 16223-16234.	3.6	9
663	Effect of symmetry and metal nanoparticles on the photophysicochemical and photodynamic therapy properties of cinnamic acid zinc phthalocyanine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 49-57.	3.9	9
664	Detonation nanodiamonds-phthalocyanine photosensitizers with enhanced photophysicochemical properties and effective photoantibacterial activity. Photodiagnosis and Photodynamic Therapy, 2020, 32, 102072.	2.6	9
665	The photophysicochemical properties and photodynamic therapy activity of In and Zn phthalocyanines when incorporated into individual or mixed Pluronic® micelles. Polyhedron, 2020, 188, 114683.	2.2	9
666	Photophysico-chemical properties and photoinactivation of Staphylococcus Aureus using zinc phthalocyanines linked silver nanoparticles conjugates. Dyes and Pigments, 2020, 176, 108237.	3.7	9

#	Article	IF	CITATIONS
667	Substituent effect on the photophysical and nonlinear optical characteristics of Si phthalocyanine – Detonated nanodiamond conjugated systems in solution. Inorganica Chimica Acta, 2020, 504, 119447.	2.4	9
668	The improved antibacterial efficiency of a zinc phthalocyanine when embedded on silver nanoparticle modified silica nanofibers. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102100.	2.6	9
669	Disilane-bridged architectures with high optical transparency for optical limiting. Journal of Materials Chemistry C, 2021, 9, 6470-6476.	5.5	9
670	Photodynamic antimicrobial activity of benzimidazole substituted phthalocyanine when conjugated to Nitrogen Doped Graphene Quantum Dots against Staphylococcus aureus. Main Group Chemistry, 2021, 20, 175-191.	0.8	9
671	Asymmetrical zinc(II) phthalocyanines cobalt tungstate nanomaterial conjugates for photodegradation of methylene blue. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113421.	3.9	9
672	Indium phthalocyanines: Comparative photophysicochemical properties and photodynamic antimicrobial activities against Staphylococcus aureus and Escherichia coli. Journal of Molecular Structure, 2022, 1250, 131850.	3.6	9
673	Computer-aided chemistry. Part I: Control of the PAR 273 electrochemical instrument using the IBM 9001 laboratory computer. Journal of Automated Methods and Management in Chemistry, 1986, 8, 122-133.	0.3	8
674	Photoassisted electron transfer between sulfur dioxide and tin(IV) phthalocyanines. Journal of the Chemical Society Chemical Communications, 1994, , 1983.	2.0	8
675	The reaction of cyanide with iron(II) hexadecachlorophthalocyanine. Polyhedron, 1995, 14, 643-648.	2.2	8
676	Synthesis, photophysicochemical studies of adjacently tetrasubstituted binaphthalo-phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2005, 09, 316-325.	0.8	8
677	Tuning the Formal Potential of Metallomacrocyclics for Maximum Catalytic Activity For the Oxidation of Thiols and Hydrazine. ECS Transactions, 2009, 19, 97-112.	0.5	8
678	Spectroscopic studies of nanostructures of negatively charged free base porphyrin and positively charged tin porphyrins. Polyhedron, 2010, 29, 1469-1474.	2.2	8
679	The effects of point of substitution on the formation of manganese phthalocyanine-based molecular materials: Surface characterization and electrocatalysis. Thin Solid Films, 2010, 519, 911-918.	1.8	8
680	Synthesis, density functional theory, molecular dynamics and electrochemical studies of 3-thiopheneacetic acid-capped gold nanoparticles. Journal of Molecular Structure, 2011, 1006, 494-501.	3.6	8
681	Electrochemical behavior of phthalocyanines containing high oxidation state central metals: Titanium(IV), vanadium(IV), and tantalum(V). Polyhedron, 2011, 30, 2132-2139.	2.2	8
682	Interaction of CdTe Quantum Dots with 2,2-Diphenyl-1-Picrylhydrazyl Free Radical: A Spectroscopic, Fluorimetric and Kinetic Study. Journal of Fluorescence, 2012, 22, 771-778.	2.5	8
683	Characterization of electrodes modified by one pot or step by step electro-click reaction and axial ligation of iron tetracarboxyphthalocyanine. Electrochimica Acta, 2014, 145, 237-244.	5.2	8
684	Photophysical behavior of Zn aminophenoxy substituted phthalocyanine conjugates with carboxylic acid-coated silica nanoparticles: Effect of point of substitution. Journal of Molecular Structure, 2014, 1068, 245-254.	3.6	8

#	Article	IF	Citations
685	Fluorescence Behaviour and Singlet Oxygen Production of Aluminium Phthalocyanine in the Presence of Upconversion Nanoparticles. Journal of Fluorescence, 2015, 25, 1417-1429.	2.5	8
686	Modification of Electrode Surfaces with Metallo Phthalocyanine Nanomaterial Hybrids. , 2016, , 225-275.		8
687	The effects of silica based nanoparticles on the photophysicochemical properties, in vitro dark viability and photodynamic therapy study of zinc monocarboxyphenoxy phthalocyanine. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329, 221-231.	3.9	8
688	The photobleaching of the free and encapsulated metallic phthalocyanine and its effect on the photooxidation of simple molecules. Journal of Photochemistry and Photobiology B: Biology, 2016, 165, 10-23.	3.8	8
689	Deposition of CdS, CdS/ZnSe and CdS/ZnSe/ZnS shells around CdSeTe alloyed core quantum dots: effects on optical properties. Luminescence, 2016, 31, 694-703.	2.9	8
690	Photophysical properties of tetraphenylporphyrinsubphthalocyanine conjugates. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1-20.	0.8	8
691	Electrocatalytic application for gold nanoparticles decorated sulfur-nitrogen co-doped graphene oxide nanosheets and nanosized cobalt tetra aminophenoxy phthalocyanine conjugates. Electrochimica Acta, 2017, 236, 212-220.	5.2	8
692	Theoretical and photodynamic therapy characteristics of heteroatom doped detonation nanodiamonds linked to asymmetrical phthalocyanine for eradication of breast cancer cells. Journal of Luminescence, 2020, 227, 117465.	3.1	8
693	Photodynamic activity of Sn(<scp>iv</scp>) tetrathien-2-ylchlorin against MCF-7 breast cancer cells. Dalton Transactions, 2021, 50, 2177-2182.	3.3	8
694	Solar Driven Photocatalytic Activity of Porphyrin Sensitized TiO2: Experimental and Computational Studies. Molecules, 2021, 26, 3131.	3.8	8
695	Symmetrically Substituted Zn and Al Phthalocyanines and Polymers for Photodynamic Therapy Application. Frontiers in Chemistry, 2021, 9, 647331.	3.6	8
696	The antibacterial and antifungal properties of neutral, octacationic and hexadecacationic Zn phthalocyanines when conjugated to silver nanoparticles. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102361.	2.6	8
697	Photodynamic antimicrobial chemotherapy of a dimethylamino-functionalized asymmetric zinc(II) phthalocyanine and its quaternized derivative against Staphylococcus aureus when supported on asymmetric polystyrene polymer membranes. Reactive and Functional Polymers, 2020, 154, 104634.	4.1	8
698	Electrografting of isophthalic acid monolayer and covalent attachment of antibody onto carbon surfaces: Construction of capacitive biosensor for methotrexate detection. Electrochimica Acta, 2021, 398, 139360.	5.2	8
699	The in vitro photo-sonodynamic combinatorial therapy activity of cationic and zwitterionic phthalocyanines on MCF-7 and HeLa cancer cell lines. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 432, 114116.	3.9	8
700	Magnetic properties of .alphalithium europium oxide and .betalithium europium oxide (Li2Eu5O8). Evidence for linear-chain Heisenberg ferromagnetic behavior. Inorganic Chemistry, 1982, 21, 398-401.	4.0	7
701	The oxidation of oxomolybdenum Phthalocyanine. Inorganica Chimica Acta, 1989, 160, 235-239.	2.4	7
702	Photoassisted reduction of thionyl chloride by neodymium, europium, thulium and lutetium diphthalocyanines. Polyhedron, 1998, 17, 3467-3475.	2.2	7

#	Article	IF	CITATIONS
703	Photophysical properties of a water-soluble adjacently substituted bisnaphthalophthalocyanine. Journal of Porphyrins and Phthalocyanines, 2005, 09, 476-483.	0.8	7
704	Effects of the number of ring substituents of cobalt carboxyphthalocyanines on the electrocatalytic detection of nitrite, cysteine and melatonin. Journal of Porphyrins and Phthalocyanines, 2009, 13, 986-997.	0.8	7
705	Comparative electrocatalytic behavior of self-assembled monolayer of thiol derivatised Co (II) phthalocyanines on gold disk, ultramicro cylinder and fiber electrodes. Journal of Applied Electrochemistry, 2009, 39, 727-736.	2.9	7
706	Evaluation of the Performance of Manganese Phthalocyanines as Superoxide Dismutase Mimics. Current Analytical Chemistry, 2009, 5, 330-338.	1.2	7
707	Electrospun Polyacrylic Acid Polymer Fibers Functionalized with Metallophthalocyanines for Photosensitizing and Gas Sensing Applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 279-287.	2.2	7
708	Synthesis and photophysical properties of covalent conjugates of aqua platinum(II) and octacarboxy-substituted zinc phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2012, 16, 1217-1224.	0.8	7
709	Glutathione capped CdTe@ZnS quantum dots–zinc tetracarboxy phthalocyanine conjugates: Fluorescence behavior studies in comparison with zinc octacarboxy phthalocyanine. Polyhedron, 2013, 54, 294-299.	2.2	7
710	Effect of bovine serum albumin and single walled carbon nanotube on the photophysical properties of zinc octacarboxy phthalocyanine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 81-87.	3.9	7
711	Effects of charge on the photophysicochemical properties of zinc phthalocyanine derivatives doped onto silica nanoparticles. Polyhedron, 2017, 138, 37-45.	2.2	7
712	Laser induced photodegradation of Orange G using phthalocyanine – cobalt ferrite magnetic nanoparticle conjugates electrospun in polystyrene nanofibers. Molecular Catalysis, 2017, 439, 211-223.	2.0	7
713	Optimizing phthalocyanine based dye-sensitized solar cells: The role of reduced graphene oxide. Synthetic Metals, 2018, 246, 236-245.	3.9	7
714	The investigation of <i>in vitro</i> dark cytotoxicity and photodynamic therapy effect of a 2,6-dibromo-3,5-distyryl BODIPY dye encapsulated in Pluronic [®] F-127 micelles. Journal of Coordination Chemistry, 2018, 71, 3444-3457.	2.2	7
715	The photophysicochemical behavior of symmetric and asymmetric zinc phthalocyanines, surface assembled onto gold nanotriangles. New Journal of Chemistry, 2018, 42, 14290-14299.	2.8	7
716	Synthesis and properties of chiral amide-bonded porphyrin dimers with various functional bridging blocks. Dyes and Pigments, 2019, 171, 107740.	3.7	7
717	Morphological influence of deposition routes on lead sulfide thin films. Inorganica Chimica Acta, 2019, 498, 119116.	2.4	7
718	Dual phototransformation of the pollutants methyl orange and Cr (VI) using phthalocyanine-cobalt ferrite based magnetic nanocomposites. Heliyon, 2019, 5, e01509.	3.2	7
719	Effect of gold nanoparticle shape on the photophysicochemical properties of sulphur containing metallophthalocyanines. Journal of Molecular Structure, 2019, 1181, 312-320.	3.6	7
720	An analysis of the photophysical and optical limiting properties of a novel 1,3,5-tristyrylBODIPY dye. Journal of Porphyrins and Phthalocyanines, 2019, 23, 63-75.	0.8	7

#	Article	IF	Citations
721	A comparative study of the singlet oxygen generation capability of a zinc phthalocyanine linked to graphene quantum dots through π-π stacking and covalent conjugation when embedded in asymmetric polymer membranes. Journal of Molecular Structure, 2019, 1180, 307-317.	3.6	7
722	Double- and quintuple-decker phthalocyaninato chelates as optical limiters in solution and thin film. Dyes and Pigments, 2020, 172, 107836.	3.7	7
723	Decorated titania fibers as photocatalysts for hydrogen generation and organic matter degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112185.	3.9	7
724	Enhanced Lightâ€Driven Antimicrobial Activity of Cationic Poly(oxanorbornene)s by Phthalocyanine Incorporation into Polymer as Pendants. Macromolecular Chemistry and Physics, 2020, 221, 2000386.	2.2	7
725	Optical limiting properties of indium 5,10,15,20-tetrakis(4-aminophenyl) porphyrin covalently linked to semiconductor quantum dots. Inorganica Chimica Acta, 2020, 511, 119838.	2.4	7
726	An octabrominated Sn(<scp>iv</scp>) tetraisopropylporphyrin as a photosensitizer dye for singlet oxygen biomedical applications. Dalton Transactions, 2020, 49, 9568-9573.	3.3	7
727	Photodynamic antimicrobial chemotherapy of asymmetric porphyrin-silver conjugates towards photoinactivation of <i>Staphylococcus aureus</i> . Journal of Coordination Chemistry, 2020, 73, 593-608.	2.2	7
728	Investigation of electrocatalytic behaviour of low symmetry cobalt phthalocyanines when clicked to azide grafted carbon electrodes. Journal of Electroanalytical Chemistry, 2020, 860, 113896.	3.8	7
729	Development of manganese phthalocyanine decorated with silver nanoparticles nanocomposite for improved electrocatalytic oxidation of hydrazine. Journal of Electroanalytical Chemistry, 2020, 866, 114173.	3.8	7
730	Electrocatalytic activity of manganese tetra 4-aminophenyl porphyrin in the presence of graphene quantum dots. Journal of Electroanalytical Chemistry, 2021, 901, 115748.	3.8	7
731	The synergistic effects of coupling Au nanoparticles with an alkynyl Co(II) phthalocyanine on the detection of prostate specific antigen. Talanta, 2022, 237, 122948.	5.5	7
732	The photocatalytic properties of zinc phthalocyanines supported on hematite nanofibers for use against methyl orange and Staphylococcus aureus. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 424, 113637.	3.9	7
733	Photodegradation of tetracycline by asymmetrical zinc(II)phthalocyanines conjugated to cobalt tungstate nanoparticles. Journal of Molecular Structure, 2022, 1261, 132938.	3.6	7
734	The formation of self-assembled monolayers of thiophthalocyanine complexes of titanium, vanadium and manganese and their use in l-cysteine electrocatalysis. Microchemical Journal, 2009, 93, 60-66.	4.5	6
735	Photophysical and photochemical studies of sulfur containing phthalocyanine derivatives in the presence of folic acid. Inorganica Chimica Acta, 2012, 392, 380-387.	2.4	6
736	Synthesis and physicochemical behaviour of aluminium trikis and tetrakis (diaquaplatinum) octacarboxyphthalocynine. Dyes and Pigments, 2012, 95, 572-579.	3.7	6
737	Electrocatalytic behavior of cobalt phthalocyanine complexes immobilized on glassy carbon electrode towards the reduction of dicrotophos pesticide. Journal of Porphyrins and Phthalocyanines, 2012, 16, 939-945.	0.8	6
738	Indium phthalocyanine–CdSe/ZnS quantum dots nanocomposites showing size dependent and near ideal optical limiting behaviour. Optical Materials, 2014, 38, 17-23.	3.6	6

#	Article	IF	CITATIONS
739	The Development of Palladium(II)-Specific Amine-Functionalized Silica-Based Microparticles: Adsorption and Column Separation Studies. Separation Science and Technology, 2015, 50, 1497-1506.	2.5	6
740	The effects of gold coated and uncoated zinc oxide nanohexagons on the photophysicochemical properties of the low symmetry zinc phthalocyanine. Journal of Molecular Structure, 2015, 1099, 551-559.	3.6	6
741	Electrode modification using nanocomposites of electropolymerised cobalt phthalocyanines supported on multiwalled carbon nanotubes. Journal of Solid State Electrochemistry, 2016, 20, 1075-1086.	2.5	6
742	Chiral Modulation from Molecular to Macroscopic levels by synthetic chiral-amide-bonded porphyrin dimers. Dyes and Pigments, 2019, 171, 107637.	3.7	6
743	Meso- and axially-modified IrIIItriarylcorroles with tunable electrocatalytic properties. Dyes and Pigments, 2020, 175, 108124.	3.7	6
744	NIR Absorbing AzaBODIPY Dyes for pH Sensing. Molecules, 2020, 25, 3689.	3.8	6
745	Enhanced photodynamic antimicrobial activity of surface modified SiNPs doped with zinc(II) phthalocyanines: The effect of antimicrobial ampicillin and extra charges from a sultone. Photodiagnosis and Photodynamic Therapy, 2020, 32, 101996.	2.6	6
746	Optical limiting properties of D-ï∈-A BODIPY dyes in the presence and absence of methyl groups at the 1,7-positions. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1129-1137.	0.8	6
747	Synthesis, theoretical calculations and laser flash photolysis studies of selected amphiphilic porphyrin derivatives used as biofilm photodegradative materials. New Journal of Chemistry, 2021, 45, 17320-17331.	2.8	6
748	Push-pull type Co(III)corroles: Synthesis, electronic structure and electrochemical catalysis. Journal of Porphyrins and Phthalocyanines, 2021, 25, 289-297.	0.8	6
749	Enhanced upconversion emission of Er3+-Yb3+ co-doped Ba5(PO4)3OH powder phosphor for application in photodynamic therapy. Sensors and Actuators A: Physical, 2021, 331, 113014.	4.1	6
750	Low temperature scalable synthetic approach enabling high bifunctional electrocatalytic performance of NiCo ₂ S ₄ and CuCo ₂ S ₄ thiospinels. RSC Advances, 2021, 11, 31533-31546.	3.6	6
751	Photophysical studies of meso-tetrakis(4-nitrophenyl) and meso-tetrakis(4-sulfophenyl) gallium porphyrins loaded into Pluronic F127 polymeric micelles. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 348, 179-187.	3.9	6
752	Photodynamic therapy characteristics of phthalocyanines in the presence of boron doped detonation nanodiamonds: Effect of symmetry and charge. Photodiagnosis and Photodynamic Therapy, 2022, 37, 102705.	2.6	6
753	Fabrication of asymmetrical morpholine phthalocyanines conjugated chitosan-polyacrylonitrile nanofibers for improved photodynamic antimicrobial chemotherapy activity. Photodiagnosis and Photodynamic Therapy, 2022, 38, 102760.	2.6	6
754	Photodynamic activity of novel cationic porphyrins conjugated to graphene quantum dots against <i>Staphylococcus aureus</i> . Journal of Porphyrins and Phthalocyanines, 2022, 26, 392-402.	0.8	6
755	Indomethacin reduces lipid peroxidation in rat brain homogenate by binding Fe2+. Metabolic Brain Disease, 2003, 18, 1-9.	2.9	5
756	Synthesis and photochemical studies of substituted adjacent binaphthalophthalocyanines. Journal of Porphyrins and Phthalocyanines, 2004, 08, 1214-1221.	0.8	5

#	Article	IF	CITATIONS
757	Unique electrochemical behavior of tantalum(V) phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2006, 10, 69-75.	0.8	5
758	Cobalt Phthalocyanine Molecular Electrode for the Electrochemical Investigation of the Release of Glutathione upon Copper-Catalyzed Decomposition of S-Nitrosoglutathione. Electroanalysis, 2007, 19, 103-106.	2.9	5
759	Effect of peripheral fused ring substitution on the optical spectroscopy and electronic structure of metal phthalocyanine complexes. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1053-1062.	0.8	5
760	Synthesis and physicochemical behavior of new low symmetry Ge, Ti and Sn phthalocyanines: Effect of central metal. Synthetic Metals, 2012, 162, 1839-1845.	3.9	5
761	An education in progress. Nature Nanotechnology, 2013, 8, 789-791.	31.5	5
762	Synthesis and Photophysical Investigation of Tetraazaporphyrin Substituted with Aggregationâ€Induced Emission (AIE) Active Moieties. European Journal of Inorganic Chemistry, 2015, 2015, 5516-5522.	2.0	5
763	Improved triplet state parameters for indium octacarboxy phthalocyanines when conjugated to quantum dots and magnetite nanoparticles. Journal of Molecular Structure, 2015, 1089, 161-169.	3.6	5
764	Synthesis and characterization of Na(Y,Gd)F4 upconversion nanoparticles and an investigation of their effects on the photophysical properties of an unsubstituted tetrathiophenoxy phthalocyanine. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	5
765	Photophysical and nonlinear optical studies of tetraakynyl zincphthalocyanine and its "clicked― analogue. Journal of Molecular Structure, 2015, 1089, 107-115.	3.6	5
766	Enhanced triplet state parameters for zinc carboxy phenoxy phthalocyanine following conjugation to ascorbic acid: Effects of adsorption on single walled carbon nanotubes. Polyhedron, 2015, 90, 175-182.	2.2	5
767	MCD spectroscopy and TD-DFT calculations of magnesium tetra-(15-crown-5-oxanthreno)-phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2016, 20, 505-513.	0.8	5
768	Synthesis, characterization and electrochemistry of rhodium(iii) complexes of meso-substituted [14]tribenzotriphyrin(2.1.1). RSC Advances, 2016, 6, 41919-41926.	3.6	5
769	"Turn on―fluorescence enhancement of Zn octacarboxyphthaloyanine-graphene oxide conjugates by hydrogen peroxide. Journal of Luminescence, 2016, 170, 317-324.	3.1	5
770	Characterization of conjugates of NaYF4:Yb,Er,Gd upconversion nanoparticle with aluminium phthalocyanines. Journal of Molecular Structure, 2017, 1130, 128-137.	3.6	5
771	Push–pull type manganese(III)corroles: Synthesis, electronic structures and tunable interactions with ctDNA. Journal of Porphyrins and Phthalocyanines, 2017, 21, 751-758.	0.8	5
772	Improved Photophysical and Photochemical Properties of Thiopheneethoxy Substituted Metallophthalocyanines on Immobilization onto Goldâ€speckled Silica Nanoparticles. Photochemistry and Photobiology, 2018, 94, 521-531.	2.5	5
773	The photophysicochemical properties and photodynamic therapy activity of phenyldiazenyl phenoxy substituted phthalocyanines when incorporated into Pluronic® F127 micelles. Polyhedron, 2019, 174, 114157.	2.2	5
774	Creating the Ideal Pushâ€Pull System for Electrocatalysis: A Comparative Study on Symmetrical and Asymmetrical Cardanolâ€based Cobalt Phthalocyanines. Electroanalysis, 2021, 33, 11-22.	2.9	5

#	Article	IF	CITATIONS
775	Photocatalytic desulfurization of dibenzothiophene using methoxy substituted asymmetrical zinc(II) phthalocyanines conjugated to metal tungstate nanomaterials. Polyhedron, 2021, 197, 115053.	2.2	5
776	Photodynamic Antimicrobial Action of Asymmetrical Porphyrins Functionalized Silver-Detonation Nanodiamonds Nanoplatforms for the Suppression of Staphylococcus aureus Planktonic Cells and Biofilms. Frontiers in Chemistry, 2021, 9, 628316.	3.6	5
777	The composites of asymmetric Co phthalocyanines-graphitic carbon nitride quantum dots-aptamer as specific electrochemical sensors for the detection of prostate specific antigen: Effects of ring substituents. Journal of Electroanalytical Chemistry, 2021, 900, 115730.	3.8	5
778	Symmetry effect of cobalt phthalocyanines on the aluminium corrosion inhibition in hydrochloric acid. Materials Letters, 2022, 306, 130892.	2.6	5
779	pH-Dependent Electrochemically Catalyzed Oxygen Reduction Behaviors of o-Substituted Co(III) Corroles. Macroheterocycles, 2020, 13, 156-162.	0.5	5
780	Electrochemical Detection of Nitrite Using an Asymmetrically Substituted Cobalt Phthalocyanine Conjugated to Metal Tungstate Nanoparticles. Electroanalysis, 2022, 34, 1348-1362.	2.9	5
781	Photodynamic Antitumor and Antimicrobial Activities of Freeâ€Base Tetra(4â€methylthiolphenyl)chlorin and Its Tin(IV) Complex. ChemPlusChem, 2022, 87, .	2.8	5
782	The effect of charge on Zn tetra morpholine porphyrin conjugated to folic acid-nitrogen doped graphene quantum dots for photodynamic therapy studies. Photodiagnosis and Photodynamic Therapy, 2022, 39, 102898.	2.6	5
783	Decoration of glass wool with zinc (II) phthalocyanine for the photocatalytic transformation of methyl orange. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 432, 114127.	3.9	5
784	pH Study of the Electrocatalytic SO 2 Detection at a Glassy Carbon Electrode Modified with Iron(II)tetrasulfophthalocyanine. Mikrochimica Acta, 2002, 140, 233-239.	5.0	4
785	Photocatalytic transformation of 4-nitrophenol in aqueous media using suspended, water-insoluble metallophthalocyanine complexes. Journal of Coordination Chemistry, 2008, 61, 3727-3739.	2.2	4
786	Temperature activated ionic conductivity in gallium and indium phthalocyanines. Polyhedron, 2011, 30, 1023-1026.	2.2	4
787	Synthesis and nonlinear optical examination of 3(4),15(16)-Bis-(4-tert-butyl-phenoxy)-10,22-diaminohemiporphyrazinato chloroindium. Journal of Molecular Structure, 2013, 1047, 143-148.	3.6	4
788	X-ray photoelectron spectroscopy analysis of the effect of alkyl- and arylthio substituents on manganese phthalocyanines for self-assembled monolayer formation on gold. Electrochemistry Communications, 2013, 31, 104-107.	4.7	4
789	Design and evaluation of an electrochemical immunosensor for measles serodiagnosis using measles-specific Immunoglobulin G antibodies. Talanta, 2013, 115, 694-701.	5.5	4
790	Carbon nanotube-enhanced photoelectrochemical properties of metallo-octacarboxyphthalocyanines. Journal of Materials Science, 2014, 49, 340-346.	3.7	4
791	Photophysical properties of zinc phthalocyanine–uridine single walled carbon nanotube – conjugates. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 149, 231-239.	3.9	4
792	A comparative photophysicochemical study of phthalocyanines encapsulated in core–shell silica nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 294-299.	3.9	4

#	Article	IF	Citations
793	Improved photocatalytic degradation of Orange G using hybrid nanofibers. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	4
794	Aza boron-pyridyl-isoindoline analogues: synthesis and photophysical properties. New Journal of Chemistry, 2017, 41, 5802-5807.	2.8	4
795	Photophysics and NLO properties of Ga(III) and In(III) phthalocyaninates bearing diethyleneglycol chains. Journal of Porphyrins and Phthalocyanines, 2018, 22, 137-148.	0.8	4
796	Optical nonlinearity of pentadecylphenoxyl substituted sandwich–type metallophthalocyanines in the presence of Ag–CdSeTe/ZnTeSe nanocrystals: Effects of conjugation and central metals. Dyes and Pigments, 2018, 151, 254-262.	3.7	4
797	Design of Phthalocyanineâ€Nanoparticle Hybrids for Photodynamic Therapy Applications in Oxygenâ€Deficient Tumour Environment. ChemistrySelect, 2019, 4, 9084-9095.	1.5	4
798	Enhanced electrocatalytic activity of cobalt phthalocyanines when "clicked―to graphene oxide nanosheets. Journal of Porphyrins and Phthalocyanines, 2019, 23, 828-840.	0.8	4
799	Photodynamic activity of Sn(IV) <i>meso</i> tetraacenaphthylporphyrin and its methyl-β-cyclodextrin inclusion complexes on MCF-7 breast cancer cells. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1486-1494.	0.8	4
800	Photodegradation of 4-chlorophenol using Zn and In phthalocyanines substituted with pyrrole without hetero atoms linkers and supported on polyacrylonitrile electrospun fibres. Polyhedron, 2020, 178, 114329.	2.2	4
801	Nonlinear optical response and electrocatalytic activity of cobalt phthalocyanine clicked zinc oxide nanoparticles. Inorganica Chimica Acta, 2020, 509, 119661.	2.4	4
802	Fabrication of electrospun fibers from a porphyrin linked to polyacrylonitrile polymer for photocatalytic transformation of phenols. Journal of Molecular Structure, 2020, 1213, 128191.	3.6	4
803	Photocatalytic desulfurization of dibenzothiophene using asymmetrical zinc(II) phthalocyanines conjugated to silver-magnetic nanoparticles. Inorganica Chimica Acta, 2021, 514, 119970.	2.4	4
804	Impact of axial ligation on photophysical and photodynamic antimicrobial properties of indium (III) methylsulfanylphenyl porphyrin complexes linked to silver-capped copper ferrite magnetic nanoparticles. Polyhedron, 2021, 193, 114882.	2.2	4
805	Photocatalytic and solar radiation harvesting potential of a free-base porphyrin-zinc (II) phthalocyanine heterodyad functionalized polystyrene polymer membrane for the degradation of 4-chlorophenol. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 409, 113142.	3.9	4
806	Electrocatalytic detection of <scp>l</scp> -cysteine using molybdenum POM doped-HKUST-1 metal organic frameworks. Journal of Coordination Chemistry, 2021, 74, 1730-1748.	2.2	4
807	Photodynamic therapy activities of phthalocyanine-based macromolecular photosensitizers on MCF-7 breast cancer cells. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 748-757.	2.2	4
808	Photophysical and nonlinear optical properties of the positional isomers of 4-(4-tertbutylphenoxy) substituted cobalt, nickel and copper phthalocyanines. Optical Materials, 2020, 109, 110195.	3.6	4
809	BODIPY Dye Embedded Electrospun Polystyrene Nanofibers for the Photocatalytic Degradation of Orange G in Industrial Wastewaters. Macroheterocycles, 2017, 10, 460-466.	0.5	4
810	A Sn(<scp>iv</scp>) porphyrin with mitochondria targeting properties for enhanced photodynamic activity against MCF-7 cells. New Journal of Chemistry, 2022, 46, 5288-5295.	2.8	4

#	Article	IF	CITATIONS
811	In vitro photoinactivation of S. aureus and photocatalytic degradation of tetracycline by novel phthalocyanine-graphene quantum dots nano-assemblies. Journal of Luminescence, 2022, 246, 118863.	3.1	4
812	Photodynamic therapy activity of 5,10,15-tris(5-bromo-2-thienyl),20(phenylcarboxy)porphyrin conjugated to graphene quantum dot against MCF-7 breast cancer cells. Journal of Coordination Chemistry, 2022, 75, 1112-1128.	2.2	4
813	The Electrocatalytic Detection of Nitrite Using Manganese Schiff Base Phthalocyanine Complexes. Electrocatalysis, 2022, 13, 663-674.	3.0	4
814	Integrated photocatalyst adsorbents based on porphyrin anchored to activated carbon granules for water treatment. Carbon Trends, 2022, 8, 100191.	3.0	4
815	Spectrophotometric and electrochemical studies of the interaction between iron(II) tetrasulfophthalocyanine and histamine. Journal of Porphyrins and Phthalocyanines, 2002, 06, 203-210.	0.8	3
816	Apoptotic inducing ability of a novel photosensitizing agent, Ge sulfophthalocyanine, on oesophageal and breast cancer cell lines. , 2006, , .		3
817	Trends in the optical and redox properties of tetraphenyltetraphenanthroporphyrins. Journal of Porphyrins and Phthalocyanines, 2012, 16, 833-844.	0.8	3
818	Synthesis and photophysical behavior of a novel zinc phthalocyanine containing a single carboxylic acid and three phenylthio substituents. Journal of Luminescence, 2012, 132, 2318-2324.	3.1	3
819	Photophysical Properties of Zinc Tetracarboxy Phthalocyanines Conjugated to Magnetic Nanoparticles. Journal of Nanoscience and Nanotechnology, 2015, 15, 3688-3696.	0.9	3
820	Enantioselective electrochemical carbon-chloride bond cleavage of hexachlorocyclohexanes (HCHs) catalyzed by Mn(III)Cl-phthalocyanine. Journal of Electroanalytical Chemistry, 2017, 803, 111-116.	3.8	3
821	Flexible Metal–Porphyrin Dimers (M=Mn ^{III} Cl, Co ^{II} , Ni ^{II} ,) Tj ETQq1 1 0.784 Theoretical Calculations. ChemPlusChem, 2017, 82, 598-606.	1314 rgBT 2.8	/Overlock
822	Photophysical properties of a series of alloyed and non-alloyed water-soluble l-cysteine-capped core quantum dots. Journal of Alloys and Compounds, 2017, 695, 1354-1361.	5.5	3
823	Pyridone substituted phthalocyanines: Photophysico-chemical properties and TD-DFT calculations. Journal of Porphyrins and Phthalocyanines, 2018, 22, 25-31.	0.8	3
824	Effects of the carboxylic acid substituents on the photophysical and nonlinear optical properties of asymmetrical Zn(II) phthalocyanines–quantum dots conjugates. Inorganic and Nano-Metal Chemistry, 2018, 48, 296-307.	1.6	3
825	Effect of gold nanoparticles shape and size on the photophysicochemical behaviour of symmetric and asymmetric zinc phthalocyanines. Journal of Luminescence, 2019, 205, 532-539.	3.1	3
826	The Effects of Asymmetry in Combination with Reduced Graphene Oxide Nanosheets on Hydrazine Electrocatalytic Detection on Cobalt Phthalocyanines. Electroanalysis, 2020, 32, 2723-2732.	2.9	3
827	Analytical Detection and Electrocatalysis of Paracetamol in Aqueous Media Using Rareâ€Earth Doubleâ€Decker Phthalocyaninato Chelates as Electrochemically Active Materials. ChemistrySelect, 2020, 5, 9857-9865.	1.5	3
828	Electrocatalytic Activity of Cobalt Phthalocyanines Revisited: Effect of the Number of Oxygen Atoms and Conjugation to Carbon Nanomaterials. Electrocatalysis, 2021, 12, 499-515.	3.0	3

#	Article	IF	Citations
829	The photophysicochemical properties and photodynamic therapy activity of Schiff base substituted phthalocyanines doped into silica nanoparticles and conjugated to folic acid. Polyhedron, 2021, 203, 115227.	2.2	3
830	Synthesis of a near infrared-actuated phthalocyanine-lipid vesicle system for augmented photodynamic therapy. Synthetic Metals, 2021, 278, 116811.	3.9	3
831	Borneol-triarylcorrole hybrids with chiral-optical response and anticancer behaviours. Dyes and Pigments, 2021, 195, 109699.	3.7	3
832	Photophysical and in vitro Antibacterial Studies of 2,6-Dibromo-BODIPY Dye Substituted with Dithienylenevinylene at 3,5-Positions. Macroheterocycles, 2018, 11, 429-437.	0.5	3
833	Covalent Conjugates of Ammine and Diamine Platinum(II) with Zinc(II) Octacarboxyphthalocyanine. Macroheterocycles, 2012, 5, 350-357.	0.5	3
834	2,6-Dibrominated 3,5-DistyrylBODIPYs as Photosensitizer Dyes for Photodynamic Antimicrobial Chemotherapy. Macroheterocycles, 2019, 12, 292-299.	0.5	3
835	Electrochemical Detection of Nitrite on Electrodes Modified by Click Chemistry Using Asymmetrical Co(II) and Mn(III) Phthalocyanines Containing Push-Pull Substituents. Journal of the Electrochemical Society, 0, , .	2.9	3
836	Structural modification of RhIIItriarylcorroles for enhanced electrocatalyzed hydrogen evolution reactions. Dyes and Pigments, 2022, 199, 110046.	3.7	3
837	Interaction of the Neurotransmitter Acetylcholine with Aluminium, Calcium and Sodium. Pharmacy and Pharmacology Communications, 2000, 6, 201-205.	0.3	2
838	Diffraction efficiency and I–V characteristics of metal-free phthalocyanine doped nematic liquid crystals. Materials Chemistry and Physics, 2009, 114, 815-820.	4.0	2
839	Optimizing the Electrocatalytic Activity of Surface Confined Co Macrocyclics for the Electrooxidation of Thiocyanate at pHâ€4. Electroanalysis, 2011, 23, 711-718.	2.9	2
840	Surface Electrochemistry: Structured Electrode, Synthesis, and Characterization. International Journal of Electrochemistry, 2012, 2012, 1-2.	2.4	2
841	Spectral properties and photophysical behaviour of water soluble cationic Mg(II) and Al(III) phthalocyanines. Open Chemistry, 2014, 12, 403-415.	1.9	2
842	Synthesis, photophysicochemical properties and TD-DFT calculations of tetrakis(2-benzoyl-4-chlorophenoxy) phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2014, 18, 326-335.	0.8	2
843	A comparative photophysicochemical study of mono substituted phthalocyanines grafted onto silica nanoparticles. Journal of Porphyrins and Phthalocyanines, 2014, 18, 396-405.	0.8	2
844	Comparative electrocatalytic studies of nanocomposites of mixed and covalently linked multiwalled carbon nanotubes and 4-(4,6-diaminopyrimidin-2-ylthio) phthalocyaninato cobalt(II). Polyhedron, 2015, 98, 47-54.	2.2	2
845	Enhanced triplet state yields in aqueous media of asymmetric zinc phthalocyanines when conjugated to silver nanoflowers. Polyhedron, 2015, 100, 296-302.	2.2	2
846	A Chiral Hemiporphyrazine Derivative: Synthesis and Chiroptical Properties. Chemistry - an Asian Journal, 2016, 11, 2113-2116.	3.3	2

#	Article	IF	Citations
847	Spectroscopic investigations and theoretical calculations of DABCO induced xanthene bridged self-assembled zinc(II) porphyrin dimer. Journal of Porphyrins and Phthalocyanines, 2016, 20, 647-655.	0.8	2
848	Effect of nature of nanoparticles on the photophysicochemical properties of asymmetrically substituted Zn phthalocyanines. Inorganica Chimica Acta, 2018, 482, 438-446.	2.4	2
849	Photodynamic activity of 2,6-dibrominated dimethylaminophenylbuta-1,3-dienylBODIPY dyes. Journal of Porphyrins and Phthalocyanines, 2021, 25, 47-55.	0.8	2
850	Photocytotoxicity of heavy-atom-free thiobarbituric acid functionalized pyrene derivatives against MCF-7 cancer cells. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102102.	2.6	2
851	Overcoming hurdles facing researchers in Africa. Nature Materials, 2021, 20, 570-570.	27.5	2
852	Photodynamic activity and photoantimicrobial chemotherapy studies of ferrocene-substituted 2-thiobarbituric acid. Bioorganic and Medicinal Chemistry Letters, 2021, 40, 127922.	2.2	2
853	Synthesis, photophysical properties and photodynamic antimicrobial activity of meso 5,10,15,20-tetra(pyren-1-yl)porphyrin and its indium(III) complex. Journal of Porphyrins and Phthalocyanines, 2021, 25, 794-799.	0.8	2
854	Electrodeposited Benzothiazole Phthalocyanines for Corrosion Inhibition of Aluminium in Acidic Medium. International Journal of Electrochemistry, 2020, 2020, 1-11.	2.4	2
855	Porphyrins Encapsulated into Pluronic F127 Micelles: Evaluating the Effect of the Central Metal and Substituents on the Photophysicochemical Properties in Water. Macroheterocycles, 2017, 10, 467-473.	0.5	2
856	Effective ROS generation and morphological effect of copper oxide nanoparticles as catalysts. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	2
857	Ï€-Extended BODIPY Analogues: Synthesis, Electronic Structure, Potential Utility for in vivo Imaging Applications and Cytotoxicity. Macroheterocycles, 2018, 11, 421-428.	0.5	2
858	Assessing the electrocatalytic activity of a localized push-pull system in cobalt phthalocyanine/graphene quantum dot hybrids. Materials Chemistry and Physics, 2022, 280, 125842.	4.0	2
859	Application of gold and palladium nanoparticles supported on polymelamine microspheres in the oxidation of 1-phenylethanol and some other phenyl substituted alcohols. Molecular Catalysis, 2022, 528, 112456 .	2.0	2
860	The effect of structure on the electrochemical properties of 14 marine pyrroloquinoline metabolites. Journal of Chemical Research, 2005, 2005, 780-783.	1.3	1
861	The photodynamic therapy effect of aluminum and zinc tetrasulfophthalocyanines on melanoma cancer cells. Proceedings of SPIE, 2010, , .	0.8	1
862	CHARACTERIZATION OF QUANTUM DOTS, SINGLE WALLED CARBON NANOTUBES AND NICKEL OCTADECYLPHTHALOCYANINE CONJUGATES. International Journal of Nanoscience, 2012, 11, 1250022.	0.7	1
863	X-RAY PHOTOELECTRON SPECTROSCOPY AND SCANNING ELECTROCHEMICAL MICROSCOPY STUDIES OF BRANCHED MULTIWALLED CARBON NANOTUBE PAPER MODIFIED BY ELECTROCHEMICAL GRAFTING AND CLICK CHEMISTRY. International Journal of Nanoscience, 2013, 12, 1350017.	0.7	1
864	Photophysicochemical properties and TD-DFT calculations of a novel terminal alkyne substituted metal free phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2014, 18, 251-258.	0.8	1

#	Article	IF	CITATIONS
865	Synthesis of single-walled carbon nanotubes by the pyrolysis of a compression activated iron(II) phthalocyanine/phthalocyanine metal-free derivative/ferric acetate mixture. Journal of Chemical Sciences, 2015, 127, 1191-1199.	1.5	1
866	Fluorescence Behaviour of an Aluminium Octacarboxy Phthalocyanine - NaYGdF4:Yb/Er Nanoparticle Conjugate. Journal of Fluorescence, 2015, 25, 489-501.	2.5	1
867	Photolytic changes in the morphology of porphyrin-phthalocyanine nanostructures (P-PcNs) in the presence of platinum and gold salts. Inorganic and Nano-Metal Chemistry, 2017, 47, 1080-1084.	1.6	1
868	Surface functionalization of glassy carbon electrodes via adsorption, electrografting and click chemistry using quantum dots and alkynyl substituted phthalocyanines: a brief review. Proceedings of SPIE, 2017, , .	0.8	1
869	Phototodynamic activity of zinc monocarboxyphenoxy phthalocyane (ZnMCPPc) conjugated to gold silver (AuAg) nanoparticles in melanoma cancer cells. Proceedings of SPIE, 2017, , .	0.8	1
870	Phototoxic effects of free phthalocyanine and phthalocyanine conjugated to gold nanoparticles for targeted photodynamic therapy of melanoma cancer. Proceedings of SPIE, 2017, , .	0.8	1
871	Electrospun 3,5-dithienylvinyleneBODIPY embedded polystyrene nanofibers for the photocatalytic degradation of azo dyes in industrial wastewaters. Journal of Porphyrins and Phthalocyanines, 2018, 22, 501-508.	0.8	1
872	Effect of doping vs covalent linking of a low symmetry zinc phthalocyanine to silica nanoparticles on singlet oxygen production. Inorganica Chimica Acta, 2018, 482, 431-437.	2.4	1
873	Physicochemical Characterization of Phthalocyanine-Functionalized Quantum Dots by Capillary Electrophoresis Coupled to a LED Fluorescence Detector. Methods in Molecular Biology, 2019, 2000, 373-385.	0.9	1
874	Characterization of electrodes modified with nanocomposites of cobalt tetraaminophenoxyphthalocyanine, reduced graphene and multi-walled carbon nanotubes. Journal of Coordination Chemistry, 2019, 72, 1922-1935.	2.2	1
875	Co(ii)Tetraphenyltetraphenanthroporphyrin@MWCNTs: enhanced π–π interaction for robust electrochemical catalysis. New Journal of Chemistry, 2019, 43, 10631-10636.	2.8	1
876	Photodynamic activity of 2,6-diiodo-3,5-dithienylvinyleneBODIPYs and their folate-functionalized chitosan-coated Pluronic \hat{A}^{\odot} F-127 micelles on MCF-7 breast cancer cells. Journal of Porphyrins and Phthalocyanines, 2020, 24, 973-984.	0.8	1
877	Growth of centimeter scale carbon wires using in-liquid AC arc discharge. SN Applied Sciences, 2020, 2, 1.	2.9	1
878	A career in photophysicochemical and electrochemical properties of phthalocyanine $\hat{a}\in$ " a Linstead Career Award paper. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1300-1319.	0.8	1
879	Modulation of the optical properties of chiral porphyrin dimers by introducing bridged chiral amide-bonds. Journal of Porphyrins and Phthalocyanines, 2021, 25, 37-46.	0.8	1
880	Low-Symmetry Phthalocyanines Bearing Carboxy-Groups: Synthesis, Spectroscopic and Quantum-Chemical Characterization. Molecules, 2022, 27, 524.	3.8	1
881	Ultrasensitive detection of prostate-specific antigen using glucose-encapsulated nanoliposomes anti-PSA polyclonal antibody as detection nanobioprobes. Talanta, 2022, 245, 123483.	5.5	1
882	Enhanced Solar Efficiency via Incorporation of Plasmonic Gold Nanostructures in a Titanium Oxide/Eosin Y Dye-Sensitized Solar Cell. Nanomaterials, 2022, 12, 1715.	4.1	1

#	Article	IF	Citations
883	Asymmetrical zinc(II) phthalocyanines conjugated to metal tungstate nanoparticles for photoinactivation of <i>Staphylococcus aureus</i> . Journal of Coordination Chemistry, 0, , 1-15.	2.2	1
884	Phthalocyanine based fabricated exfoliated graphite photoanode for electrodegradation of 4-acetamidophenol under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 432, 114115.	3.9	1
885	Photomedicine and Photo Nanosystems. International Journal of Photoenergy, 2012, 2012, 1-1.	2.5	О
886	Synthesis and physicochemical behaviour of aluminium bis and tris(diammine platinum) octacarboxyphthalocyanine. Polyhedron, 2013, 55, 121-125.	2.2	0
887	Photoinduced charge transfer between Indoline D149 and porous ZnO detected in transient absorption. EPJ Web of Conferences, 2013, 41, 04011.	0.3	0
888	Characterization of porphyrin nanorods on fluorine doped tin oxide glass sheet. Journal of Porphyrins and Phthalocyanines, 2015, 19, 1147-1158.	0.8	0
889	Synthesis and dark toxicity of 5-(4-carboxyphenyl)-10,15,20-tris(phenyl)-porphyrinato chlorido gallium(III) when conjugated to $\hat{\Gamma}$ -aminolevulinic acid. Journal of Coordination Chemistry, 2016, 69, 3035-3042.	2.2	0
890	Preface â€" Women in Porphyrin Science. Journal of Porphyrins and Phthalocyanines, 2019, 23, i-i.	0.8	0
891	Photodynamic activity of Sn(IV) meso-tetraacenaphthylporphyrin and its methyl- \hat{l}^2 -cyclodextrin inclusion complexes on MCF-7 breast cancer cells., 2021,, 376-384.		0
892	An analysis of the photophysical and optical limiting properties of a novel 1,3,5-tristyrylBODIPY dye., 2021, , 419-431.		0
893	Enhanced electrocatalytic activity of cobalt phthalocyanines when "clicked―to graphene oxide nanosheets. , 2021, , 1216-1229.		0
894	Photophysicochemical properties and photodynamic therapy activity of chloroindium(III) tetraarylporphyrins and their gold nanoparticle conjugates., 2021,, 207-218.		0
895	Naked Eye and Colorimetric Detection of Cyanide with a 1,3â€Diethylâ€2â€thiobarbituric Acid Substituted Ferrocene Chemosensor. ChemistrySelect, 2021, 6, 1448-1452.	1.5	0
896	Optical limiting properties of BODIPY dyes substituted with styryl or vinylene groups on the nanosecond timescale., 2021,, 402-418.		0
897	Electrocatalytic Activity of Schiff Base Containing Copper Phthalocyanines Towards the ÂDetection of Catechol: Effect of Heteroatoms and Asymmetry. SSRN Electronic Journal, 0, , .	0.4	0
898	Ultrafast Photodynamics of Indoline D149-sensitized ZnO solar cells. , 2012, , .		0
899	Cytotoxicity screening of a series of semiconductor quantum dots for their potential biomedical use. FASEB Journal, 2013, 27, 575.11.	0.5	0
900	Editorial: Rising Stars: Africa. Frontiers in Chemistry, 2022, 10, 851125.	3.6	0

ARTICLE IF CITATIONS

901 Electrodes Modified with Monomeric M-N4 Catalyst for the Detection of Environmentally Important Molecules., 2006,, 315-361.