Luca Nerva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4592/publications.pdf

Version: 2024-02-01

394421 377865 1,385 48 19 34 citations h-index g-index papers 49 49 49 1405 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Sprayâ€induced gene silencing targeting a glutathione Sâ€transferase gene improves resilience to drought in grapevine. Plant, Cell and Environment, 2022, 45, 347-361.	5.7	15
2	Mycorrhizal symbiosis balances rootstock-mediated growth-defence tradeoffs. Biology and Fertility of Soils, 2022, 58, 17-34.	4.3	19
3	Abiotic Stress and Belowground Microbiome: The Potential of Omics Approaches. International Journal of Molecular Sciences, 2022, 23, 1091.	4.1	26
4	The hidden world within plants: metatranscriptomics unveils the complexity of wood microbiomes. Journal of Experimental Botany, 2022, 73, 2682-2697.	4.8	24
5	Novel sustainable strategies to control <i>Plasmopara viticola</i> in grapevine unveil new insights on priming responses and arthropods ecology. Pest Management Science, 2022, 78, 2342-2356.	3.4	5
6	Grapevine virome and production of healthy plants by somatic embryogenesis. Microbial Biotechnology, 2022, 15, 1357-1373.	4.2	7
7	New insights from the virome of Halyomorpha halys (StåI, 1855). Virus Research, 2022, 316, 198802.	2.2	3
8	Breeding toward improved ecological plant–microbiome interactions. Trends in Plant Science, 2022, 27, 1134-1143.	8.8	43
9	Mycoviruses: A Hidden World Within Fungi. , 2021, , 134-141.		4
10	Microscale analysis of soil characteristics and microbiomes reveals potential impacts on plants and fruit: vineyard as a model case study. Plant and Soil, 2021, 462, 525-541.	3.7	6
11	Where do Chip and Dale come from? Origins of invasive populations of the Siberian chipmunk in Europe. Mammal Research, 2021, 66, 525.	1.3	5
12	Novel and emerging biotechnological crop protection approaches. Plant Biotechnology Journal, 2021, 19, 1495-1510.	8.3	26
13	Leaf gas exchange and abscisic acid in leaves of Glera grape variety during drought and recovery. Theoretical and Experimental Plant Physiology, 2021, 33, 261-270.	2.4	11
14	Aspergillus Goes Viral: Ecological Insights from the Geographical Distribution of the Mycovirome within an Aspergillus flavus Population and Its Possible Correlation with Aflatoxin Biosynthesis. Journal of Fungi (Basel, Switzerland), 2021, 7, 833.	3.5	7
15	Putative new plant viruses associated with <i>Plasmopara viticola</i> â€infected grapevine samples. Annals of Applied Biology, 2020, 176, 180-191.	2.5	50
16	Scent of Jasmine Attracts Alien Invaders and Records on Citizen Science Platforms: Multiple Introductions of the Invasive Lacebug Corythauma ayyari (Drake, 1933) (Heteroptera: Tingidae) in Italy and the Mediterranean Basin. Insects, 2020, 11, 620.	2.2	6
17	Double Gamersâ€"Can Modified Natural Regulators of Higher Plants Act as Antagonists against Phytopathogens? The Case of Jasmonic Acid Derivatives. International Journal of Molecular Sciences, 2020, 21, 8681.	4.1	11
18	Photosynthetic Traits and Nitrogen Uptake in Crops: Which Is the Role of Arbuscular Mycorrhizal Fungi?. Plants, 2020, 9, 1105.	3.5	41

#	Article	IF	Citations
19	The Molecular Priming of Defense Responses is Differently Regulated in Grapevine Genotypes Following Elicitor Application against Powdery Mildew. International Journal of Molecular Sciences, 2020, 21, 6776.	4.1	15
20	Combined Effects of Water Deficit, Exogenous Ethylene Application and Root Symbioses on Trigonelline and ABA Accumulation in Fenugreek. Applied Sciences (Switzerland), 2020, 10, 2338.	2.5	11
21	Impact of an arbuscular mycorrhizal fungal inoculum and exogenous MeJA on fenugreek secondary metabolite production under water deficit. Environmental and Experimental Botany, 2020, 176, 104096.	4.2	23
22	Effects of Different Microbial Inocula on Tomato Tolerance to Water Deficit. Agronomy, 2020, 10, 170.	3.0	36
23	Getting ready with the priming: Innovative weapons against biotic and abiotic crop enemies in a global changing scenario., 2020,, 35-56.		11
24	Arbuscular Mycorrhizal Symbiosis Primes Tolerance to Cucumber Mosaic Virus in Tomato. Viruses, 2020, 12, 675.	3.3	23
25	Two New Putative Plant Viruses from Wood Metagenomics Analysis of an Esca Diseased Vineyard. Plants, 2020, 9, 835.	3.5	14
26	Double-Stranded RNAs (dsRNAs) as a Sustainable Tool against Gray Mold (Botrytis cinerea) in Grapevine: Effectiveness of Different Application Methods in an Open-Air Environment. Biomolecules, 2020, 10, 200.	4.0	59
27	ICTV Virus Taxonomy Profile: Botourmiaviridae. Journal of General Virology, 2020, 101, 454-455.	2.9	51
28	Extreme Diversity of Mycoviruses Present in Isolates of Rhizoctonia solani AG2-2 LP From Zoysia japonica From Brazil. Frontiers in Cellular and Infection Microbiology, 2019, 9, 244.	3.9	78
29	The mycovirome of a fungal collection from the sea cucumber Holothuria polii. Virus Research, 2019, 273, 197737.	2.2	65
30	Skull shape and Bergmann's rule in mammals: hints from Old World porcupines. Journal of Zoology, 2019, 308, 47-55.	1.7	18
31	Isolation, molecular characterization and virome analysis of culturable wood fungal endophytes in esca symptomatic and asymptomatic grapevine plants. Environmental Microbiology, 2019, 21, 2886-2904.	3.8	82
32	Reclassification of the serows and gorals: the end of a neverending story?. Mammal Review, 2019, 49, 256-262.	4.8	35
33	Soil microbiome analysis in an ESCA diseased vineyard. Soil Biology and Biochemistry, 2019, 135, 60-70.	8.8	20
34	Grapevine Phyllosphere Community Analysis in Response to Elicitor Application against Powdery Mildew. Microorganisms, 2019, 7, 662.	3.6	21
35	Distinct Metabolic Signals Underlie Clone by Environment Interplay in "Nebbiolo―Grapes Over Ripening. Frontiers in Plant Science, 2019, 10, 1575.	3.6	15
36	Biological and Molecular Characterization of Chenopodium quinoa Mitovirus 1 Reveals a Distinct Small RNA Response Compared to Those of Cytoplasmic RNA Viruses. Journal of Virology, 2019, 93, .	3.4	63

#	Article	IF	CITATIONS
37	Mycoviruses mediate mycotoxin regulation in <i>Aspergillus ochraceus</i> . Environmental Microbiology, 2019, 21, 1957-1968.	3.8	39
38	Accumulation of 24 nucleotide transgeneâ€derived siRNAs is associated with crinivirus immunity in transgenic plants. Molecular Plant Pathology, 2018, 19, 2236-2247.	4.2	10
39	Identification and characterization of Hibiscus latent Fort Pierce virus in Italy. Journal of Plant Pathology, 2018, 100, 145-145.	1.2	5
40	Different Approaches to Discover Mycovirus Associated to Marine Organisms. Methods in Molecular Biology, 2018, 1746, 97-114.	0.9	19
41	Full-length genome sequence of the tospovirus melon severe mosaic virus. Archives of Virology, 2017, 162, 1419-1422.	2.1	4
42	Mycoviruses of an endophytic fungus can replicate in plant cells: evolutionary implications. Scientific Reports, 2017, 7, 1908.	3.3	79
43	Transmission of <i>Penicillium aurantiogriseum</i> partitiâ€like virus 1 to a new fungal host (<i>Cryphonectria parasitica</i>) confers higher resistance to salinity and reveals adaptive genomic changes. Environmental Microbiology, 2017, 19, 4480-4492.	3.8	56
44	Deep Sequencing Analysis of RNAs from Citrus Plants Grown in a Citrus Sudden Death-Affected Area Reveals Diverse Known and Putative Novel Viruses. Viruses, 2017, 9, 92.	3.3	53
45	Complete Genome Sequence of the Largest Known Flavi-Like Virus, <i>Diaphorina citri flavi-like virus</i> , a Novel Virus of the Asian Citrus Psyllid, <i>Diaphorina citri</i> . Genome Announcements, 2016, 4, .	0.8	11
46	Multiple approaches for the detection and characterization of viral and plasmid symbionts from a collection of marine fungi. Virus Research, 2016, 219, 22-38.	2.2	135
47	Plant and fungal gene expression in mycorrhizal protocorms of the orchid <i>Serapias vomeracea</i> colonized by <i>Tulasnella calospora</i> . Plant Signaling and Behavior, 2014, 9, e977707.	2.4	19
48	Multiple origins of the common chameleon in southern Italy. Herpetozoa, 0, 32, 11-19.	1.0	6