Timothy H Keitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4591522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	USING CIRCUIT THEORY TO MODEL CONNECTIVITY IN ECOLOGY, EVOLUTION, AND CONSERVATION. Ecology, 2008, 89, 2712-2724.	1.5	1,405
2	Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters, 2007, 10, 299-314.	3.0	1,096
3	LANDSCAPE CONNECTIVITY: A GRAPH-THEORETIC PERSPECTIVE. Ecology, 2001, 82, 1205-1218.	1.5	1,054
4	Iterative near-term ecological forecasting: Needs, opportunities, and challenges. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1424-1432.	3.3	400
5	Allee Effects, Invasion Pinning, and Species' Borders. American Naturalist, 2001, 157, 203-216.	1.0	384
6	Detecting Critical Scales in Fragmented Landscapes. Ecology and Society, 1997, 1, .	0.9	349
7	The community context of species' borders: ecological and evolutionary perspectives. Oikos, 2005, 108, 28-46.	1.2	323
8	Accounting for spatial pattern when modeling organism-environment interactions. Ecography, 2002, 25, 616-625.	2.1	293
9	Dispersal, Environmental Correlation, and Spatial Synchrony in Population Dynamics. American Naturalist, 2000, 155, 628-636.	1.0	252
10	Theoretical models of species' borders: single species approaches. Oikos, 2005, 108, 18-27.	1.2	252
11	Characterizing genomic variation of <i>Arabidopsis thaliana</i> : the roles of geography and climate. Molecular Ecology, 2012, 21, 5512-5529.	2.0	215
12	Species' borders: a unifying theme in ecology. Oikos, 2005, 108, 3-6.	1.2	213
13	Resilience vs. historical contingency in microbial responses to environmental change. Ecology Letters, 2015, 18, 612-625.	3.0	202
14	Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecology, 2009, 24, 253-266.	1.9	197
15	Dynamics of North American breeding bird populations. Nature, 1998, 393, 257-260.	13.7	158
16	Species diversity in neutral metacommunities: a network approach. Ecology Letters, 2008, 11, 52-62.	3.0	146
17	Spectral representation of neutral landscapes. Landscape Ecology, 2000, 15, 479-494.	1.9	126
18	Natural Variation in Abiotic Stress Responsive Gene Expression and Local Adaptation to Climate in Arabidopsis thaliana. Molecular Biology and Evolution, 2014, 31, 2283-2296.	3.5	125

Тімотну Н Кеітт

#	Article	IF	CITATIONS
19	Resolving the life cycle alters expected impacts of climate change. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150837.	1.2	123
20	Detection of Critical Densities Associated with Pinon-Juniper Woodland Ecotones. Ecology, 1996, 77, 805-821.	1.5	122
21	Coherent ecological dynamics induced by large-scale disturbance. Nature, 2008, 454, 331-334.	13.7	105
22	SCALE-SPECIFIC INFERENCE USING WAVELETS. Ecology, 2005, 86, 2497-2504.	1.5	93
23	Network isolation and local diversity in neutral metacommunities. Oikos, 2010, 119, 1355-1363.	1.2	81
24	DETECTION OF SCALE-SPECIFIC COMMUNITY DYNAMICS USING WAVELETS. Ecology, 2006, 87, 2895-2904.	1.5	72
25	ENVIRONMENTAL FLUCTUATIONS INDUCE SCALEâ€DEPENDENT COMPENSATION AND INCREASE STABILITY IN PLANKTON ECOSYSTEMS. Ecology, 2008, 89, 3204-3214.	1.5	64
26	Spatial and Temporal Heterogeneity Explain Disease Dynamics in a Spatially Explicit Network Model. American Naturalist, 2008, 172, 149-159.	1.0	61
27	Conservation biogeography of the US–Mexico border: a transcontinental risk assessment of barriers to animal dispersal. Diversity and Distributions, 2011, 17, 673-687.	1.9	56
28	Traitâ€mediated effects of environmental filtering on tree community dynamics. Journal of Ecology, 2013, 101, 722-733.	1.9	55
29	Spatial heterogeneity and anomalous kinetics: emergent patterns in diffusion-limited predatory-prey interaction. Journal of Theoretical Biology, 1995, 172, 127-139.	0.8	51
30	Ontogeny constrains phenology: opportunities for activity and reproduction interact to dictate potential phenologies in a changing climate. Ecology Letters, 2016, 19, 620-628.	3.0	51
31	Habitat conversion, extinction thresholds, and pollination services in agroecosystems. Ecological Applications, 2009, 19, 1561-1573.	1.8	49
32	The Introduced Hawaiian Avifauna Reconsidered: Evidence for Self-Organized Criticality?. Journal of Theoretical Biology, 1996, 182, 161-167.	0.8	43
33	Stability and complexity on a lattice: coexistence of species in an individual-based food web model. Ecological Modelling, 1997, 102, 243-258.	1.2	42
34	Scaleâ€dependent responses to forest cover displayed by frugivore bats. Oikos, 2008, 117, 1725-1731.	1.2	42
35	Spatial forecasting of switchgrass productivity under current and future climate change scenarios. Ecological Applications, 2013, 23, 73-85.	1.8	38
36	Scaling in the growth of geographically subdivided populations: invariant patterns from a continent-wide biological survey. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 627-633.	1.8	33

Тімотну Н Кеітт

#	Article	IF	CITATIONS
37	Reserve Size and Fragmentation Alter Community Assembly, Diversity, and Dynamics. American Naturalist, 2013, 182, E142-E160.	1.0	28
38	LANDSCAPE CONNECTIVITY: A GRAPH-THEORETIC PERSPECTIVE. , 2001, 82, 1205.		27
39	Predicting and Mapping Potential Whooping Crane Stopover Habitat to Guide Site Selection for Wind Energy Projects. Conservation Biology, 2014, 28, 541-550.	2.4	26
40	A dynamically downscaled projection of past and future microclimates. Ecology, 2016, 97, 1888-1888.	1.5	26
41	Ecology in the age of automation. Science, 2021, 373, 858-859.	6.0	24
42	The role of functional traits and individual variation in the coâ€occurrence of <i>Ficus</i> species. Ecology, 2014, 95, 978-990.	1.5	23
43	Modeling Differential Growth in Switchgrass Cultivars Across the Central and Southern Great Plains. Bioenergy Research, 2014, 7, 1165-1173.	2.2	21
44	The Effect of Spatial Structure of Pasture Tree Cover on Avian Frugivores in Eastern Amazonia. Biotropica, 2012, 44, 489-497.	0.8	20
45	Enhanced Migratory Waterfowl Distribution Modeling by Inclusion of Depth to Water Table Data. PLoS ONE, 2012, 7, e30142.	1.1	20
46	Spatial land use trade-offs for maintenance of biodiversity, biofuel, and agriculture. Landscape Ecology, 2015, 30, 1987-1999.	1.9	19
47	A sampling theory for asymmetric communities. Journal of Theoretical Biology, 2011, 273, 1-14.	0.8	15
48	The Role of Demography and Markets in Determining Deforestation Rates Near Ranomafana National Park, Madagascar. PLoS ONE, 2009, 4, e5783.	1.1	14
49	Abundance of Panamanian dry-forest birds along gradients of forest cover at multiple scales. Journal of Tropical Ecology, 2010, 26, 67-78.	O.5	12
50	LORACS: JAVA software for modeling landscape connectivity and matrix permeability. Ecography, 2012, 35, 388-392.	2.1	12
51	A hierarchical model of whole assemblage island biogeography. Ecography, 2017, 40, 982-990.	2.1	12
52	Scale invariance in the spatial-dynamics of biological invasions. NeoBiota, 0, 62, 269-278.	1.0	7
53	Network Theory: An Evolving Approach to Landscape Conservation. , 2003, , 125-134.		6
54	Population status, connectivity, and conservation action for the endangered Baird's tapir. Biological Conservation, 2020, 245, 108501.	1.9	5

Тімотну Н Кеітт

#	Article	IF	CITATIONS
55	Integration of distance, direction and habitat into a predictive migratory movement model for blue-winged teal (Anas discors). Ecological Modelling, 2012, 224, 25-32.	1.2	4
56	Altitudinal limits of Eastern Himalayan birds are created by competition past and present. PLoS ONE, 2019, 14, e0217549.	1.1	4
57	On the quantification of local variation in biodiversity scaling using wavelets. , 2007, , 168-180.		3
58	Cavitationâ€resistant junipers cease transpiration earlier than cavitationâ€vulnerable oaks under summer dry conditions. Ecohydrology, 2022, 15, e2337.	1.1	3
59	Neutral processes and reduced dispersal across Amazonian rivers may explain how rivers maintain species diversity after secondary contact. Perspectives in Ecology and Conservation, 2022, 20, 151-158.	1.0	2
60	The Mismatch between Range and Niche Limits due to Source-Sink Dynamics Can Be Greater than Species Mean Dispersal Distance. American Naturalist, 2022, 200, 448-455.	1.0	2
61	Productivity, nutrient imbalance and fragility in coupled producer–decomposer systems. Ecological Modelling, 2012, 245, 12-18.	1.2	1
62	Scale-dependent responses to forest cover displayed by frugivore bats. Oikos, 2008, , .	1.2	1
63	Network isolation and local diversity in neutral metacommunities. Oikos, 2010, 119, 1355.	1.2	1
64	Ecological scale: Theory and applications edited by David L. Peterson and V. Thomas Parker. Complexity, 1999, 4, 28-29.	0.9	0
65	Step-wise drops in modularity and the fragmentation of exploited marine metapopulations. Landscape Ecology, 2017, 32, 1643-1656.	1.9	0