
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4591141/publications.pdf Version: 2024-02-01

CECÃNA ROOLE

#	Article	lF	CITATIONS
1	A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnology Advances, 2011, 29, 142-155.	11.7	307
2	Antibodies and Genetically Engineered Related Molecules: Production and Purification. Biotechnology Progress, 2004, 20, 639-654.	2.6	302
3	Affinity-based methodologies and ligands for antibody purification: Advances and perspectives. Journal of Chromatography A, 2007, 1160, 44-55.	3.7	226
4	Magnetic separations in biotechnology. Biotechnology Advances, 2013, 31, 1374-1385.	11.7	189
5	Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnology Advances, 2014, 32, 366-381.	11.7	121
6	Studies on the molecular recognition between bioactive peptides and angiotensin onverting enzyme. Journal of Molecular Recognition, 2009, 22, 162-168.	2.1	114
7	Antibody-Conjugated Nanoparticles for Therapeutic Applications. Current Medicinal Chemistry, 2012, 19, 3103-3127.	2.4	106
8	Identification and Antibioticâ€ s usceptibility Profiling of Infectious Bacterial Agents: A Review of Current and Future Trends. Biotechnology Journal, 2019, 14, e1700750.	3.5	105
9	Protein- and Peptide-Based Biosensors in Artificial Olfaction. Trends in Biotechnology, 2018, 36, 1244-1258.	9.3	97
10	Bio-recognition and detection using liquid crystals. Biosensors and Bioelectronics, 2009, 25, 1-8.	10.1	94
11	An artificial protein L for the purification of immunoglobulins and Fab fragments by affinity chromatography. Journal of Chromatography A, 2005, 1064, 157-167.	3.7	86
12	Biocompatible and bioactive gum Arabic coated iron oxide magnetic nanoparticles. Journal of Biotechnology, 2009, 144, 313-320.	3.8	84
13	Renaissance of protein crystallization and precipitation in biopharmaceuticals purification. Biotechnology Advances, 2017, 35, 41-50.	11.7	81
14	Platforms for enrichment of phosphorylated proteins and peptides in proteomics. Trends in Biotechnology, 2012, 30, 100-110.	9.3	80
15	Seeing the Unseen: The Role of Liquid Crystals in Gasâ€5ensing Technologies. Advanced Optical Materials, 2020, 8, 1902117.	7.3	73
16	Tilapia fish microbial spoilage monitored by a single optical gas sensor. Food Control, 2018, 89, 72-76.	5.5	69
17	Effects of phase transfer ligands on monodisperse iron oxide magnetic nanoparticles. Journal of Colloid and Interface Science, 2015, 437, 147-155.	9.4	66
18	Gum Arabic coated magnetic nanoparticles with affinity ligands specific for antibodies. Journal of Molecular Recognition, 2010, 23, 462-471.	2.1	61

#	Article	IF	CITATIONS
19	Synthesis and screening of a rationally designed combinatorial library of affinity ligands mimicking protein L fromPeptostreptococcus magnus. Journal of Molecular Recognition, 2005, 18, 213-224.	2.1	51
20	Tunable Gas Sensing Gels by Cooperative Assembly. Advanced Functional Materials, 2017, 27, 1700803.	14.9	50
21	Advances and applications of de novo designed affinity ligands in proteomics. Biotechnology Advances, 2006, 24, 17-26.	11.7	48
22	Anything but Conventional Chromatography Approaches in Bioseparation. Biotechnology Journal, 2020, 15, e1900274.	3.5	47
23	Preparation and characterization of a cellulose affinity membrane for human immunoglobulin G (IgG) purification. Journal of Membrane Science, 2010, 348, 224-230.	8.2	41
24	Machine learning for the meta-analyses of microbial pathogens' volatile signatures. Scientific Reports, 2018, 8, 3360.	3.3	40
25	Tackling Humidity with Designer Ionic Liquidâ€Based Gas Sensing Soft Materials. Advanced Materials, 2022, 34, e2107205.	21.0	38
26	Antibody immobilization on magnetic particles. Journal of Molecular Recognition, 2009, 22, 77-82.	2.1	33
27	Adsorption of gum Arabic on bioceramic nanoparticles. Materials Science and Engineering C, 2008, 28, 443-447.	7.3	32
28	An Historical Overview of Drug Discovery. Methods in Molecular Biology, 2010, 572, 3-12.	0.9	32
29	Dextran-Coated Magnetic Supports Modified with a Biomimetic Ligand for IgG Purification. ACS Applied Materials & Interfaces, 2012, 4, 5907-5914.	8.0	32
30	Understanding the molecular recognition between antibody fragments and protein A biomimetic ligand. Journal of Chromatography A, 2012, 1244, 106-115.	3.7	32
31	Stimuliâ€Responsive magnetic nanoparticles for monoclonal antibody purification. Biotechnology Journal, 2013, 8, 709-717.	3.5	31
32	Magnetic aqueous two phase fishing: A hybrid process technology for antibody purification. Journal of Chromatography A, 2014, 1339, 59-64.	3.7	30
33	Lessons from nature: On the molecular recognition elements of the phosphoprotein binding-domains. Biotechnology and Bioengineering, 2005, 91, 546-555.	3.3	29
34	Potential of boronic acid functionalized magnetic particles in the adsorption of human antibodies under mammalian cell culture conditions. Journal of Chromatography A, 2011, 1218, 7821-7827.	3.7	29
35	Functional monolithic platforms: Chromatographic tools for antibody purification. Biotechnology Journal, 2013, 8, 671-681.	3.5	29
36	Anti-CD8 conjugated nanoparticles to target mammalian cells expressing CD8. International Journal of Pharmaceutics, 2010, 399, 80-86.	5.2	28

#	Article	IF	CITATIONS
37	A new method for the screening of solid-phase combinatorial libraries for affinity chromatography. Journal of Molecular Recognition, 2004, 17, 262-267.	2.1	27
38	Development and Validation of an HPLC/UV Method for Quantification of Bioactive Peptides in Fermented Milks. Journal of Liquid Chromatography and Related Technologies, 2007, 30, 2139-2147.	1.0	26
39	Fishing human monoclonal antibodies from a CHO cell supernatant with boronic acid magnetic particles. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 903, 163-170.	2.3	23
40	Exploring the potential of magnetic antimicrobial agents for water disinfection. Water Research, 2014, 66, 160-168.	11.3	22
41	Boronic acid-modified magnetic materials for antibody purification. Journal of the Royal Society Interface, 2014, 11, 20130875.	3.4	22
42	An extracellular polymer at the interface of magnetic bioseparations. Journal of the Royal Society Interface, 2014, 11, 20140743.	3.4	22
43	Affitins for protein purification by affinity magnetic fishing. Journal of Chromatography A, 2016, 1457, 50-58.	3.7	22
44	The future of protein scaffolds as affinity reagents for purification. Biotechnology and Bioengineering, 2017, 114, 481-491.	3.3	22
45	Microfluidics in Gas Sensing and Artificial Olfaction. Sensors, 2020, 20, 5742.	3.8	22
46	Short communication: Effect of kefir grains on proteolysis of major milk proteins. Journal of Dairy Science, 2010, 93, 27-31.	3.4	21
47	Hybrid Monoliths for Magneticallyâ€Ðriven Protein Separations. Advanced Functional Materials, 2014, 24, 4528-4541.	14.9	20
48	Free Marine Natural Products Databases for Biotechnology and Bioengineering. Biotechnology Journal, 2019, 14, e1800607.	3.5	19
49	Affinity chromatography: history, perspectives, limitations and prospects. Methods in Molecular Biology, 2008, 421, 1-21.	0.9	19
50	Fluorescence recognition of proteinaceous binders in works of art by a novel integrated system of investigation. Microscopy Research and Technique, 2012, 75, 316-324.	2.2	17
51	A value-added exopolysaccharide as a coating agent for MRI nanoprobes. Nanoscale, 2015, 7, 14272-14283.	5.6	17
52	Rational design of affinity ligands for bioseparation. Journal of Chromatography A, 2020, 1619, 460871.	3.7	17
53	The interaction of polymer-coated magnetic nanoparticles with seawater. Science of the Total Environment, 2014, 487, 771-777.	8.0	16
54	Covalent coupling of gum arabic onto superparamagnetic iron oxide nanoparticles for MRI cell labeling: physicochemical and <i>in vitro</i> characterization. Contrast Media and Molecular Imaging, 2015, 10, 320-328.	0.8	16

#	Article	IF	CITATIONS
55	Effect of film thickness in gelatin hybrid gels for artificial olfaction. Materials Today Bio, 2019, 1, 100002.	5.5	16
56	Affinity Tags in Protein Purification and Peptide Enrichment: An Overview. Methods in Molecular Biology, 2014, 1129, 147-168.	0.9	15
57	Designed affinity ligands to capture human serum albumin. Journal of Chromatography A, 2019, 1583, 88-97.	3.7	15
58	Design, Synthesis, and Screening of Biomimetic Ligands for Affinity Chromatography. Methods in Molecular Biology, 2005, 310, 43-62.	0.9	14
59	Bioinspired and sustainable chitosan-based monoliths for antibody capture and release. RSC Advances, 2012, 2, 11285.	3.6	14
60	A Tailorâ€Made "Tag–Receptor―Affinity Pair for the Purification of Fusion Proteins. ChemBioChem, 2014, 15, 1423-1435.	2.6	14
61	Affinity Tags in Protein Purification and Peptide Enrichment: An Overview. Methods in Molecular Biology, 2021, 2178, 107-132.	0.9	14
62	De novo design, synthesis and screening of a combinatorial library of complementary ligands directed towards the surface of cutinase fromFusarium solani pisi. Journal of Molecular Recognition, 2006, 19, 372-378.	2.1	13
63	Structural evaluation of an alternative Protein A biomimetic ligand for antibody purification. Journal of Computer-Aided Molecular Design, 2014, 28, 25-34.	2.9	13
64	Optical Gas Sensing with Liquid Crystal Droplets and Convolutional Neural Networks. Sensors, 2021, 21, 2854.	3.8	13
65	Synergy between silk fibroin and ionic liquids for active gas-sensing materials. Materials Today Bio, 2022, 15, 100290.	5.5	13
66	Biobased Monoliths for Adenovirus Purification. ACS Applied Materials & Interfaces, 2015, 7, 6605-6612.	8.0	12
67	Mild and cost-effective green fluorescent protein purification employing small synthetic ligands. Journal of Chromatography A, 2015, 1418, 83-93.	3.7	12
68	Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview. Methods in Molecular Biology, 2016, 1355, 193-209.	0.9	12
69	In situ magnetic separation of antibody fragments from Escherichia coli in complex media. BMC Biotechnology, 2013, 13, 44.	3.3	11
70	Tryptophan tags and de novo designed complementary affinity ligands for the expression and purification of recombinant proteins. Journal of Chromatography A, 2016, 1472, 55-65.	3.7	11
71	Nanoscale Events on Cyanobiphenyl-Based Self-Assembled Droplets Triggered by Gas Analytes. ACS Applied Materials & Interfaces, 2022, 14, 6261-6273.	8.0	11
72	Immobilization of enterokinase on magnetic supports for the cleavage of fusion proteins. Journal of Biotechnology, 2012, 161, 378-382.	3.8	10

#	Article	IF	CITATIONS
73	A green approach toward antibody purification: a sustainable biomimetic ligand for direct immobilization on (bio)polymeric supports. Journal of Molecular Recognition, 2013, 26, 662-671.	2.1	10
74	Mimicking nature: Phosphopeptide enrichment using combinatorial libraries of affinity ligands. Journal of Chromatography A, 2016, 1457, 76-87.	3.7	10
75	Ionogels Based on a Single Ionic Liquid for Electronic Nose Application. Chemosensors, 2021, 9, 201.	3.6	10
76	Retroviral particles are effectively purified on an affinity matrix containing peptides selected by phageâ€display. Biotechnology Journal, 2016, 11, 1513-1524.	3.5	9
77	Petasis-Ugi ligands: New affinity tools for the enrichment of phosphorylated peptides. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1031, 86-93.	2.3	9
78	β-Hairpins as peptidomimetics of human phosphoprotein-binding domains. Organic and Biomolecular Chemistry, 2019, 17, 3996-4004.	2.8	9
79	Stable and Oriented Liquid Crystal Droplets Stabilized by Imidazolium Ionic Liquids. Molecules, 2021, 26, 6044.	3.8	9
80	<i>In vitro</i> studies with mammalian cell lines and gum arabicâ€coated magnetic nanoparticles. Journal of Molecular Recognition, 2010, 23, 536-542.	2.1	8
81	Comparison of Fluorescence Labelling Techniques for the Selection of Affinity Ligands from Solid-Phase Combinatorial Libraries. Separation Science and Technology, 2010, 45, 2187-2193.	2.5	8
82	Affinity adsorbents for proline-rich peptide sequences: a new role for WW domains. RSC Advances, 2016, 6, 68979-68988.	3.6	8
83	Comparison of the Internal Dynamics of Metalloproteases Provides New Insights on Their Function and Evolution. PLoS ONE, 2015, 10, e0138118.	2.5	7
84	Discovery of phosphotyrosine-binding oligopeptides with supramolecular target selectivity. Chemical Science, 2021, 13, 210-217.	7.4	7
85	Magnetic acoustic resonance immunoassay (MARIA): a multifrequency acoustic approach for the non-labelled detection of biomolecular interactions. Journal of Molecular Recognition, 2006, 19, 379-385.	2.1	6
86	A theoretical and experimental approach toward the development of affinity adsorbents for GFP and GFP-fusion proteins purification. Journal of Biotechnology, 2014, 186, 13-20.	3.8	6
87	Small synthetic ligands for the enrichment of viral particles pseudotyped with amphotropic murine leukemia virus envelope. Journal of Chromatography A, 2016, 1438, 160-170.	3.7	6
88	Sustainable plant polyesters as substrates for optical gas sensors. Materials Today Bio, 2020, 8, 100083.	5.5	6
89	Magnetic Precipitation: A New Platform for Protein Purification. Biotechnology Journal, 2020, 15, 2000151.	3.5	5
90	Magnetic particles used in a new approach for designed protein crystallization. CrystEngComm, 2021, 23, 1083-1090.	2.6	5

ARTICLE IF CITATIONS A purification platform for antibodies and derived fragments using a de novo designed affinity adsorbent. Separation and Purification Technology, 2021, 265, 118476. Affinity Chromatography., 2008, , 1-23. 92 5 Rationally Designed Ligands for Use in Affinity Chromatography., 2008, 421, 93-110. An Optimized E-nose for Efi¬cient Volatile Sensing and Discrimination., 2019,,. 94 5 Noncontact excitation of quartz crystal resonator chips. Applied Physics Letters, 2006, 89, 083516. 3.3 An in silico and chemical approach towards small protein production and application in 96 3.6 4 phosphoproteomics. RSC Advances, 2015, 5, 19743-19751. Hydrolytic zinc metallopeptides using a computational multi-state design approach. Catalysis Science 4.1 4 and Technology, 2019, 9, 6723-6736. Design and Evolution of an Opto-electronic Device for VOCs Detection., 2018, 1, 48-55. 98 4 Native, engineered and de novo designed ligands targeting the SARS-CoV-2 spike protein. Biotechnology 11.7 Advances, 2022, 59, 107986. 100 An affinity triggered MRI nanoprobe for pH-dependent cell labeling. RSC Advances, 2016, 6, 113503-113512. 3.6 3 Hybrid Magnetic-Polymeric Iron Oxide Nanoprobes for Magnetic Resonance Imaging. Journal of 0.9 Nanoscience and Nanotechnology, 2017, 17, 4410-4431. Natural Multimerization Rules the Performance of Affinity-Based Physical Hydrogels for Stem Cell 102 5.4 3 Encapsulation and Differentiation. Biomacromolecules, 2020, 21, 3081-3091. Affinity-triggered hydrogels: Developments and prospects in biomaterials science. Biomaterials, 2021, 11.4 268, 120563. Purification of human antibodies from animal cell cultures using gum arabic coated magnetic 104 3.2 2 particles. Journal of Chemical Technology and Biotechnology, 2015, 90, 838-846. Integration of Molecular Dynamics Based Predictions into the Optimization of De Novo Protein Designs: Limitations and Benefits. Methods in Molecular Biology, 2017, 1529, 181-201. Magnetic fishing of recombinant green fluorescent proteins and tagged proteins with designed 106 2.52 synthetic ligands. Separation Science and Technology, 2017, 52, 2909-2917. Affinityâ€Triggered Assemblies Based on a Designed Peptide–Peptide Affinity Pair. Biotechnology Journal, 3.5 2019, 14, e1800559.

108 Enhanced gas sensing with soft functional materials. , 2019, , .

#	Article	IF	CITATIONS
109	Wireless excitation of quartz crystals immersed in an aqueous fluid. Analyst, The, 2006, 131, 474.	3.5	1
110	Liquid Crystals: Tunable Gas Sensing Gels by Cooperative Assembly (Adv. Funct. Mater. 27/2017). Advanced Functional Materials, 2017, 27, .	14.9	0
111	Versatile and Tunable Poly(Ethylene Glycol)â€Based Hydrogels Crosslinked through the Ugi Reaction. ChemPlusChem, 2020, 85, 2737-2741.	2.8	0
112	Magnetic crystallization proof-of-concept: lysozyme and trypsin case study. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e183-e184.	0.1	0
113	Impact of Sensing Film's Production Method on Classification Accuracy by Electronic Nose. , 2019, , .		0
114	Learning to see VOCs with Liquid Crystal Droplets. , 2022, , .		0