
Ya-Hong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4589976/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards Understanding MCR-like Colistin Resistance. Trends in Microbiology, 2018, 26, 794-808.	7.7	361
2	Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Nature Microbiology, 2019, 4, 1457-1464.	13.3	313
3	Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nature Communications, 2020, 11, 1427.	12.8	133
4	Co-transfer of blaNDM-5 and mcr-1 by an IncX3–X4 hybrid plasmid in Escherichia coli. Nature Microbiology, 2016, 1, 16176.	13.3	123
5	Emergence of NDM-5- and MCR-1-Producing Escherichia coli Clones ST648 and ST156 from a Single Muscovy Duck (Cairina moschata). Antimicrobial Agents and Chemotherapy, 2016, 60, 6899-6902.	3.2	118
6	IncF plasmid diversity in multi-drug resistant Escherichia coli strains from animals in China. Frontiers in Microbiology, 2015, 6, 964.	3.5	86
7	Emerging Highâ€Level Tigecycline Resistance: Novel Tetracycline Destructases Spread via the Mobile Tet(X). BioEssays, 2020, 42, e2000014.	2.5	78
8	Multiple transmissible genes encoding fluoroquinolone and third-generation cephalosporin resistance co-located in non-typhoidal Salmonella isolated from food-producing animals in China. International Journal of Antimicrobial Agents, 2014, 43, 242-247.	2.5	74
9	Determination of 26 veterinary antibiotics residues in water matrices by lyophilization in combination with LC–MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 949-950, 79-86.	2.3	58
10	IncA/C Plasmid-Mediated Spread of CMY-2 in Multidrug-Resistant Escherichia coli from Food Animals in China. PLoS ONE, 2014, 9, e96738.	2.5	52
11	Characterization of CTX-M-14-producing Escherichia coli from food-producing animals. Frontiers in Microbiology, 2015, 6, 1136.	3.5	51
12	Co-occurrence of Plasmid-Mediated Tigecycline and Carbapenem Resistance in Acinetobacter spp. from Waterfowls and Their Neighboring Environment. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	51
13	Efflux Pump Overexpression Contributes to Tigecycline Heteroresistance in Salmonella enterica serovar Typhimurium. Frontiers in Cellular and Infection Microbiology, 2017, 7, 37.	3.9	48
14	Detection of mutations in the gyrA and parC genes in Escherichia coli isolates carrying plasmid-mediated quinolone resistance genes from diseased food-producing animals. Journal of Medical Microbiology, 2012, 61, 1591-1599.	1.8	47
15	Genetic diversity and characteristics of high-level tigecycline resistance Tet(X) in Acinetobacter species. Genome Medicine, 2020, 12, 111.	8.2	45
16	Emergence of mobile tigecycline resistance mechanism in <i>Escherichia coli</i> strains from migratory birds in China. Emerging Microbes and Infections, 2019, 8, 1219-1222.	6.5	44
17	Distribution patterns of antibiotic resistance genes and their bacterial hosts in pig farm wastewater treatment systems and soil fertilized with pig manure. Science of the Total Environment, 2021, 758, 143654.	8.0	44
18	Characterization of the Multi-Drug Resistance Gene cfr in Methicillin-Resistant Staphylococcus aureus (MRSA) Strains Isolated From Animals and Humans in China. Frontiers in Microbiology, 2018, 9, 2925.	3.5	37

#	Article	IF	CITATIONS
19	Characterization of a P1-like bacteriophage carrying CTX-M-27 in Salmonella spp. resistant to third generation cephalosporins isolated from pork in China. Scientific Reports, 2017, 7, 40710.	3.3	36
20	CTX-M-27 Producing Salmonella enterica Serotypes Typhimurium and Indiana Are Prevalent among Food-Producing Animals in China. Frontiers in Microbiology, 2016, 7, 436.	3.5	34
21	Co-spread of oqxAB and blaCTX-M-9G in non-Typhi Salmonella enterica isolates mediated by ST2-IncHI2 plasmids. International Journal of Antimicrobial Agents, 2014, 44, 263-268.	2.5	33
22	Within-host heterogeneity and flexibility of mcr-1 transmission in chicken gut. International Journal of Antimicrobial Agents, 2020, 55, 105806.	2.5	33
23	Design, synthesis and antibacterial evaluation of novel pleuromutilin derivatives possessing piperazine linker. European Journal of Medicinal Chemistry, 2017, 127, 286-295.	5.5	31
24	IS <i>26</i> Is Responsible for the Evolution and Transmission of <i>bla</i> _{NDM} -Harboring Plasmids in Escherichia coli of Poultry Origin in China. MSystems, 2021, 6, e0064621.	3.8	31
25	Design, synthesis and biological evaluation of novel pleuromutilin derivatives containing piperazine and 1,2,3-triazole linker. Bioorganic Chemistry, 2020, 105, 104398.	4.1	29
26	<i>In Vivo</i> Pharmacokinetic/Pharmacodynamic Profiles of Valnemulin in an Experimental Intratracheal Mycoplasma gallisepticum Infection Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 3754-3760.	3.2	28
27	The ISApl12 Dimer Circular Intermediate Participates in mcr-1 Transposition. Frontiers in Microbiology, 2019, 10, 15.	3.5	28
28	Design, synthesis and biological evaluation of novel pleuromutilin derivatives possessing acetamine phenyl linker. European Journal of Medicinal Chemistry, 2019, 181, 111594.	5.5	27
29	Detection of chromosome-mediated tet(X4)-carrying Aeromonas caviae in a sewage sample from a chicken farm. Journal of Antimicrobial Chemotherapy, 2019, 74, 3628-3630.	3.0	27
30	Molecular epidemiology of carbapenemase-producing <i>Escherichia coli</i> from duck farms in south-east coastal China. Journal of Antimicrobial Chemotherapy, 2021, 76, 322-329.	3.0	27
31	Impact of enrofloxacin and florfenicol therapy on the spread of OqxAB gene and intestinal microbiota in chickens. Veterinary Microbiology, 2016, 192, 1-9.	1.9	26
32	Pharmacokinetic/Pharmacodynamic Profiles of Tiamulin in an Experimental Intratracheal Infection Model of Mycoplasma gallisepticum. Frontiers in Veterinary Science, 2016, 3, 75.	2.2	24
33	Retrospective Data Insight into the Clobal Distribution of Carbapenemase-Producing Pseudomonas aeruginosa. Antibiotics, 2021, 10, 548.	3.7	24
34	Colistin Combined With Tigecycline: A Promising Alternative Strategy to Combat Escherichia coli Harboring blaNDM–5 and mcr-1. Frontiers in Microbiology, 2019, 10, 2957.	3.5	23
35	Duck wastes as a potential reservoir of novel antibiotic resistance genes. Science of the Total Environment, 2021, 771, 144828.	8.0	23
36	Identification of the Multi-Resistance Gene cfr in Escherichia coli Isolates of Animal Origin. PLoS ONE, 2014, 9, e102378.	2.5	23

#	Article	IF	CITATIONS
37	Complete Sequence of a <i>tet</i> (X4)-Harboring IncX1 Plasmid, pYY76-1-2, in Escherichia coli from a Cow Sample in China. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	22
38	Spread of tet(X5) and tet(X6) genes in multidrug-resistant Acinetobacter baumannii strains of animal origin. Veterinary Microbiology, 2021, 253, 108954.	1.9	22
39	Integration of pharmacokinetic and pharmacodynamic indices of valnemulin in broiler chickens after a single intravenous and intramuscular administration. Veterinary Journal, 2014, 201, 109-115.	1.7	21
40	Ex vivo pharmacokinetic and pharmacodynamic analysis of valnemulin against Mycoplasma gallisepticum S6 in Mycoplasma gallisepticum and Escherichia coli co-infected chickens. Veterinary Journal, 2015, 204, 54-59.	1.7	21
41	A novel plasmid-borne tet(X6) variant co-existing with blaNDM-1 and blaOXA-58 in a chicken Acinetobacter baumannii isolate. Journal of Antimicrobial Chemotherapy, 2020, 75, 3397-3399.	3.0	21
42	In vitro dynamic pharmacokinetic/pharmacodynamic(PK/PD) modeling and PK/PD cutoff of cefquinome against Haemophilus parasuis. BMC Veterinary Research, 2015, 11, 33.	1.9	20
43	Dissemination of the chromosomally encoded CMY-2 cephalosporinase gene in Escherichia coli isolated from animals. International Journal of Antimicrobial Agents, 2015, 46, 209-213.	2.5	20
44	Complete Nucleotide Sequence ofcfr-Carrying IncX4 Plasmid pSD11 from Escherichia coli. Antimicrobial Agents and Chemotherapy, 2015, 59, 738-741.	3.2	19
45	Rapid detection of plasmid-mediated high-level tigecycline resistance in Escherichia coli and Acinetobacter spp. Journal of Antimicrobial Chemotherapy, 2020, 75, 1479-1483.	3.0	19
46	Comprehensive analysis of plasmid-mediated tet(X4)-positive Escherichia coli isolates from clinical settings revealed a high correlation with animals and environments-derived strains. Science of the Total Environment, 2022, 806, 150687.	8.0	19
47	Reducing tetracycline antibiotics residues in aqueous environments using Tet(X) degrading enzymes expressed in Pichia pastoris. Science of the Total Environment, 2021, 799, 149360.	8.0	19
48	Dose Assessment of Cefquinome by Pharmacokinetic/Pharmacodynamic Modeling in Mouse Model of Staphylococcus aureus Mastitis. Frontiers in Microbiology, 2016, 7, 1595.	3.5	17
49	Design, synthesis, and structure–activity relationship studies of novel pleuromutilin derivatives having a piperazine ring. Chemical Biology and Drug Design, 2016, 88, 699-709.	3.2	17
50	Genomic Insights into <i>mcr-1</i> -Positive Plasmids Carried by Colistin-Resistant Escherichia coli Isolates from Inpatients. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	17
51	Evolutionary Trajectory of the Tet(X) Family: Critical Residue Changes towards High-Level Tigecycline Resistance. MSystems, 2021, 6, .	3.8	17
52	Co-prevalance of PMQR and 16S rRNA methylase genes in clinical Escherichia coli isolates with high diversity of CTX-M from diseased farmed pigeons. Veterinary Microbiology, 2015, 178, 238-245.	1.9	16
53	First Report of the Incl1/ST898 Conjugative Plasmid CarryingrmtE216S rRNA Methyltransferase Gene in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2015, 59, 7921-7922.	3.2	16
54	Complete Sequence of the FII Plasmid p42-2, Carrying <i>bla</i> _{CTX-M-55} , <i>oqxAB</i> , <i>fosA3</i> , and <i>floR</i> from Escherichia coli. Antimicrobial Agents and Chemotherapy, 2016, 60, 4336-4338.	3.2	16

#	Article	IF	CITATIONS
55	Source Tracking and Global Distribution of the Tigecycline Non-Susceptible <i>tet</i> (X). Microbiology Spectrum, 2021, 9, e0116421.	3.0	16
56	Persistent spread of the rmtB 16S rRNA methyltransferase gene among Escherichia coli isolates from diseased food-producing animals in China. Veterinary Microbiology, 2016, 188, 41-46.	1.9	15
57	Synthesis and antibacterial activities of novel pleuromutilin derivatives bearing an aminothiophenol moiety. Chemical Biology and Drug Design, 2018, 92, 1627-1637.	3.2	15
58	Prevalence of extended-spectrum cephalosporin-resistant Escherichia coli in a farrowing farm: ST1121 clone harboring IncHI2 plasmid contributes to the dissemination of blaCMY-2. Frontiers in Microbiology, 2015, 6, 1210.	3.5	14
59	Re-engineering a mobile-CRISPR/Cas9 system for antimicrobial resistance gene curing and immunization in <i>Escherichia coli</i> . Journal of Antimicrobial Chemotherapy, 2021, 77, 74-82.	3.0	14
60	Rapid Screening of Essential Oils as Substances Which Enhance Antibiotic Activity Using a Modified Well Diffusion Method. Antibiotics, 2021, 10, 463.	3.7	14
61	Low-Concentration Ciprofloxacin Selects Plasmid-Mediated Quinolone Resistance Encoding Genes and Affects Bacterial Taxa in Soil Containing Manure. Frontiers in Microbiology, 2016, 7, 1730.	3.5	13
62	Occurrence and Transmission of <i>bla</i> _{NDM} -Carrying <i>Enterobacteriaceae</i> from Geese and the Surrounding Environment on a Commercial Goose Farm. Applied and Environmental Microbiology, 2021, 87, .	3.1	13
63	Rapid Detection of High-Level Tigecycline Resistance in Tet(X)-Producing Escherichia coli and Acinetobacter spp. Based on MALDI-TOF MS. Frontiers in Cellular and Infection Microbiology, 2020, 10, 583341.	3.9	12
64	In VitroDevelopment of Ciprofloxacin Resistance ofSalmonella entericaSerovars Typhimurium, Enteritidis, and Indiana Isolates from Food Animals. Microbial Drug Resistance, 2017, 23, 687-694.	2.0	11
65	Complete Nucleotide Sequence of a Novel Plasmid Bearing the High-Level Tigecycline Resistance Gene tet (X4). Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	11
66	Prevalence of tet(X4) in Escherichia coli From Duck Farms in Southeast China. Frontiers in Microbiology, 2021, 12, 716393.	3.5	11
67	High frequency of virulence genes among Escherichia coli with the bla CTX-M genotype from diarrheic piglets in China. Veterinary Microbiology, 2015, 180, 260-267.	1.9	10
68	ExÂvivo pharmacokinetic/pharmacodynamic relationship of valnemulin against Clostridium perfringens in plasma, the small intestinal and caecal contents of rabbits. Anaerobe, 2016, 39, 150-157.	2.1	10
69	Epidemiological and PK/PD cutoff values determination and PK/PD-based dose assessment of gamithromycin against Haemophilus parasuis in piglets. BMC Veterinary Research, 2020, 16, 81.	1.9	10
70	Molecular Epidemiology of Fosfomycin Resistant E. coli from a Pigeon Farm in China. Antibiotics, 2021, 10, 777.	3.7	9
71	Metagenomic insights into the influence of mobile genetic elements on ARGs along typical wastewater treatment system on pig farms in China. Science of the Total Environment, 2022, 839, 156313.	8.0	9
72	Synthesis and Antibacterial Activity Against MRSA of Pleuromutilin Derivatives Possessing a Mercaptoethylamine Linker. Medicinal Chemistry, 2018, 14, 585-594.	1.5	8

#	Article	IF	CITATIONS
73	Activity of Tigecycline or Colistin in Combination with Zidovudine against Escherichia coli Harboring <i>tet</i> (X) and <i>mcr-1</i> . Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	8
74	Pharmacokinetic/Pharmacodynamic Correlation of Cefquinome Against Experimental Catheter-Associated Biofilm Infection Due to Staphylococcus aureus. Frontiers in Microbiology, 2015, 6, 1513.	3.5	7
75	Characterization of a fosA3 Carrying IncC–IncN Plasmid From a Multidrug-Resistant ST17 Salmonella Indiana Isolate. Frontiers in Microbiology, 2020, 11, 1582.	3.5	7
76	Diversity of L1/L2 genes and molecular epidemiology of high-level carbapenem resistance Stenotrophomonas maltophilia isolates from animal production environment in China. Infection, Genetics and Evolution, 2020, 86, 104531.	2.3	7
77	Transmission of plasmid-borne and chromosomal blaCTX-M-64 among Escherichia coli and Salmonella isolates from food-producing animals via ISEcp1-mediated transposition. Journal of Antimicrobial Chemotherapy, 2020, 75, 1424-1427.	3.0	7
78	A Transposon-Associated CRISPR/Cas9 System Specifically Eliminates both Chromosomal and Plasmid-Borne <i>mcr-1</i> in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2021, 65, e0105421.	3.2	7
79	Plasmid-mediated quinolone resistance determinant qepA1 and extended-spectrum β-lactamase gene bla CTX-M-14 co-located on the same plasmid in two Escherichia coli strains from China. Journal of Medical Microbiology, 2012, 61, 603-605.	1.8	5
80	Linezolid and Rifampicin Combination to Combat cfr-Positive Multidrug-Resistant MRSA in Murine Models of Bacteremia and Skin and Skin Structure Infection. Frontiers in Microbiology, 2019, 10, 3080.	3.5	5
81	Emergence of fosA3 and blaCTX–M–14 in Multidrug-Resistant Citrobacter freundii Isolates From Flowers and the Retail Environment in China. Frontiers in Microbiology, 2021, 12, 586504.	3.5	5
82	Two novel blaNDM-1-harbouring transposons on pPrY2001-like plasmids coexisting with a novel cfr-encoding plasmid in food animal source Enterobacteriaceae. Journal of Global Antimicrobial Resistance, 2021, 26, 222-226.	2.2	5
83	Discovery of Novel Pleuromutilin Derivatives as Potent Antibacterial Agents for the Treatment of MRSA Infection. Molecules, 2022, 27, 931.	3.8	5
84	MALDI-TOF MS for rapid detection and differentiation between Tet(X)-producers and non-Tet(X)-producing tetracycline-resistant Gram-negative bacteria. Virulence, 2022, 13, 77-88.	4.4	5
85	Comparison of PK/PD Targets and Cutoff Values for Danofloxacin Against Pasteurella multocida and Haemophilus parasuis in Piglets. Frontiers in Veterinary Science, 2022, 9, 811967.	2.2	4
86	<i>In Vivo</i> Pharmacodynamic Target Assessment of Antofloxacin against Streptococcus pneumoniae and Staphylococcus aureus in a Neutropenic Murine Pneumonia Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	2
87	Molecular Epidemiology of New Delhi Metallo-β-Lactamase-Producing Escherichia coli in Food-Producing Animals in China. Frontiers in Microbiology, 0, 13, .	3.5	2
88	Erratum for Zhang et al., "Source Tracking and Global Distribution of the Tigecycline-Nonsusceptible Tet(X)― Microbiology Spectrum, 2022, 10, e0113122.	3.0	1