Martyn G Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4589329/publications.pdf

Version: 2024-02-01

101543 114465 4,545 67 36 63 citations g-index h-index papers 67 67 67 3713 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Trophic Diatom Index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology, 1995, 7, 433-444.	2.8	599
2	Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology, 1998, 10, 215-224.	2.8	374
3	Protecting and restoring Europe's waters: An analysis of the future development needs of the Water Framework Directive. Science of the Total Environment, 2019, 658, 1228-1238.	8.0	295
4	Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Research, 2018, 138, 192-205.	11.3	275
5	The European reference condition concept: A scientific and technical approach to identify minimally-impacted river ecosystems. Science of the Total Environment, 2012, 420, 33-42.	8.0	143
6	Use of algae and other plants for monitoring rivers. Austral Ecology, 1995, 20, 45-56.	1.5	134
7	Nutrient criteria for surface waters under the European Water Framework Directive: Current state-of-the-art, challenges and future outlook. Science of the Total Environment, 2019, 695, 133888.	8.0	127
8	Why We Need Sustainable Networks Bridging Countries, Disciplines, Cultures and Generations for Aquatic Biomonitoring 2.0: A Perspective Derived From the DNAqua-Net COST Action. Advances in Ecological Research, 2018, 58, 63-99.	2.7	120
9	A comparison of national approaches to setting ecological status boundaries in phytobenthos assessment for the European Water Framework Directive: results of an intercalibration exercise. Hydrobiologia, 2009, 621, 169-182.	2.0	110
10	Comparative performance of benthic diatom indices used to assess river water quality. Hydrobiologia, 1995, 302, 179-188.	2.0	107
11	Recommendations for sampling littoral diatoms in lakes for ecological status assessments. Journal of Applied Phycology, 2006, 18, 15-25.	2.8	105
12	Intercalibrating classifications of ecological status: Europe's quest for common management objectives for aquatic ecosystems. Science of the Total Environment, 2013, 454-455, 490-499.	8.0	103
13	Diat.barcode, an open-access curated barcode library for diatoms. Scientific Reports, 2019, 9, 15116.	3.3	103
14	A hitchhiker's guide to European lake ecological assessment and intercalibration. Ecological Indicators, 2015, 52, 533-544.	6.3	96
15	Morphology and identity of some ecologically important small <i>Nitzschia</i> species. Diatom Research, 2013, 28, 37-59.	1.2	94
16	Small Water Bodies in Great Britain and Ireland: Ecosystem function, human-generated degradation, and options for restorative action. Science of the Total Environment, 2018, 645, 1598-1616.	8.0	87
17	Benthic algal assessment of ecological status in European lakes and rivers: Challenges and opportunities. Science of the Total Environment, 2016, 568, 603-613.	8.0	78
18	Uncertainty in ecological status assessments of lakes and rivers using diatoms. Hydrobiologia, 2009, 633, 5-15.	2.0	75

#	Article	IF	CITATIONS
19	Data rich, information poor? Phytobenthos assessment and the Water Framework Directive. European Journal of Phycology, 2013, 48, 437-450.	2.0	72
20	European aquatic ecological assessment methods: A critical review of their sensitivity to key pressures. Science of the Total Environment, 2020, 740, 140075.	8.0	71
21	Identification versus counting protocols as sources of uncertainty in diatom-based ecological status assessments. Hydrobiologia, 2012, 695, 109-124.	2.0	69
22	Interactions between pH and nutrients on benthic algae in streams and consequences for ecological status assessment and species richness patterns. Science of the Total Environment, 2013, 444, 73-84.	8.0	68
23	Assessment of ecological status in UK lakes using benthic diatoms. Freshwater Science, 2014, 33, 639-654.	1.8	68
24	Key Questions for Next-Generation Biomonitoring. Frontiers in Environmental Science, 2020, 7, .	3.3	68
25	Role of periphyton in ecological assessment of lakes. Freshwater Science, 2014, 33, 619-638.	1.8	63
26	Comparing aspirations: intercalibration of ecological status concepts across European lakes for littoral diatoms. Hydrobiologia, 2014, 734, 125-141.	2.0	61
27	Evaluation of the Trophic Diatom Index for assessing water quality in River Gharasou, western Iran. Hydrobiologia, 2007, 589, 165-173.	2.0	58
28	Ecological variation within Sellaphora species complexes (Bacillariophyceae): specialists or generalists?. Hydrobiologia, 2008, 614, 373-386.	2.0	58
29	Validation of diatoms as proxies for phytobenthos when assessing ecological status in lakes. Hydrobiologia, 2008, 610, 125-129.	2.0	57
30	Establishing expectations for pan-European diatom based ecological status assessments. Ecological Indicators, 2012, 20, 177-186.	6.3	55
31	Macrophyte assessment in European lakes: Diverse approaches but convergent views of  good' ecological status. Ecological Indicators, 2018, 94, 185-197.	6.3	55
32	Deriving nutrient criteria to support $\hat{E}^{1/2}$ good $\hat{E}^{1/4}$ ecological status in European lakes: An empirically based approach to linking ecology and management. Science of the Total Environment, 2019, 650, 2074-2084.	8.0	53
33	Diatom DNA metabarcoding for ecological assessment: Comparison among bioinformatics pipelines used in six European countries reveals the need for standardization. Science of the Total Environment, 2020, 745, 140948.	8.0	53
34	Executing multi-taxa eDNA ecological assessment via traditional metrics and interactive networks. Science of the Total Environment, 2020, 729, 138801.	8.0	51
35	THE CONCEPTUAL BASIS OF ECOLOGICAL-STATUS ASSESSMENTS USING DIATOMS. Biology and Environment, 2009, 109, 175-189.	0.3	49
36	Redundancy in the ecological assessment of lakes: Are phytoplankton, macrophytes and phytobenthos all necessary?. Science of the Total Environment, 2016, 568, 594-602.	8.0	40

#	Article	IF	Citations
37	The potential of High-Throughput Sequencing (HTS) of natural samples as a source of primary taxonomic information for reference libraries of diatom barcodes. Fottea, 2018, 18, 37-54.	0.9	40
38	Benthic algae assessments in the EU and the US: Striving for consistency in the face of great ecological diversity. Ecological Indicators, 2021, 121, 107082.	6.3	37
39	Estimating river nutrient concentrations consistent with good ecological condition: More stringent nutrient thresholds needed. Ecological Indicators, 2021, 121, 107017.	6.3	36
40	Connecting the morphological and molecular species concepts to facilitate species identification within the genus <i>Fragilaria</i> (Bacillariophyta). Journal of Phycology, 2019, 55, 948-970.	2.3	28
41	Estimating nutrient thresholds for eutrophication management: Novel insights from understudied lake types. Science of the Total Environment, 2022, 827, 154242.	8.0	27
42	Characterizing the niches of two very similar <i>Nitzschia</i> species and implications for ecological assessment. Diatom Research, 2015, 30, 27-33.	1.2	21
43	Overwhelming role of hydrology-related variables and river types in driving diatom species distribution and community assemblage in streams in Cyprus. Ecological Indicators, 2020, 117, 106690.	6.3	21
44	Validation of ecological status concepts in UK rivers using historic diatom samples. Aquatic Botany, 2009, 90, 289-295.	1.6	19
45	The Semiotics of Slime: Visual Representation of Phytobenthos as an aid to Understanding Ecological Status. Freshwater Reviews: A Journal of the Freshwater Biological Association, 2012, 5, 105-119.	1.0	19
46	A Water Framework Directive-compatible metric for assessing acidification in UK and Irish rivers using diatoms. Science of the Total Environment, 2016, 568, 671-678.	8.0	19
47	Customs, habits, and traditions: the role of nonscientific factors in the development of ecological assessment methods. Wiley Interdisciplinary Reviews: Water, 2015, 2, 159-165.	6.5	17
48	Establishing nutrient thresholds in the face of uncertainty and multiple stressors: A comparison of approaches using simulated datasets. Science of the Total Environment, 2019, 684, 425-433.	8.0	17
49	Effect of streamlining taxa lists on diatom-based indices: implications for intercalibrating ecological status. Hydrobiologia, 2012, 695, 253-263.	2.0	13
50	RAPPER: A new method for rapid assessment of macroalgae as a complement to diatom-based assessments of ecological status. Science of the Total Environment, 2016, 568, 536-545.	8.0	13
51	HUMAN ERROR AND QUALITY ASSURANCE IN DIATOM ANALYSIS. Series in Machine Perception and Artificial Intelligence, 2002, , 75-91.	0.1	12
52	Building capacity for ecological assessment using diatoms in UK rivers. Journal of Ecology and Environment, 2013, 36, 89-94.	1.6	12
53	Taxonomic and ecological characterization of two Ulnaria species (Bacillariophyta) from streams in Cyprus. Phytotaxa, 2018, 346, 78.	0.3	11
54	Potential for cross-contamination of benthic diatom samples when using toothbrushes. Diatom Research, 2013, 28, 359-363.	1.2	10

#	Article	IF	CITATIONS
55	Effect of environmental improvements on the diatoms of the River Axe, southern England Fottea, 2009, 9, 343-349.	0.9	10
56	The Emperor's new clothes? A comment on. Ecological Indicators, 2011, 11, 1492-1494.	6.3	9
57	Establishing ecologically-relevant nutrient thresholds: A tool-kit with guidance on its use. Science of the Total Environment, 2022, 807, 150977.	8.0	9
58	Spatial and seasonal variation of peatland-fed riverine macroinvertebrate and benthic diatom assemblages and implications for assessment: a case study from Ireland. Hydrobiologia, 2014, 728, 67-87.	2.0	8
59	Simplicity is the ultimate sophistication: Building capacity to meet the challenges of the Water Framework Directive. Ecological Indicators, 2014, 36, 519-523.	6.3	8
60	Co-occurrence, ecological profiles and geographical distribution based on unique molecular identifiers of the common freshwater diatoms Fragilaria and Ulnaria. Ecological Indicators, 2022, 141, 109114.	6.3	7
61	The "Forgotten―Ecology Behind Ecological Status Evaluation: Re-Assessing the Roles of Aquatic Plants and Benthic Algae in Ecosystem Functioning. Progress in Botany Fortschritte Der Botanik, 2016, , 285-304.	0.3	6
62	Defining ecological status of phytobenthos in very large rivers: a case study in practical implementation of the Water Framework Directive in Romania. Hydrobiologia, 2019, 828, 353-367.	2.0	6
63	The Fellowship of the Ring Test: DNAqua-Net WG2 initiative to compare diatom metabarcoding protocols used in routine freshwater biomonitoring for standardisation. ARPHA Conference Abstracts, 0, 4, .	0.0	5
64	Adapting the (fast-moving) world of molecular ecology to the (slow-moving) world of environmental regulation: lessons from the UK diatom metabarcoding exercise. Metabarcoding and Metagenomics, $0, 3, .$	0.0	5
65	Analysis of some species resembling Fragilaria capucina (Fragilariaceae, Bacillariophyta). Fottea, 2021, 21, 128-151.	0.9	4
66	Potential for cross-contamination of diatom DNA samples when using toothbrushes. Metabarcoding and Metagenomics, $0, 5, \ldots$	0.0	1
67	Freshwater Biota as Indicators of Impact: Case Studies and Examples of the Major Groups in Surface Water Assessment., 2022,, 20-34.		1