
Rubén FernÃ;ndez-Santiago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4589121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential Phosphoâ€Signatures in Blood Cells Identify <scp> <i>LRRK2 </i> G2019S </scp> Carriers in Parkinson's Disease. Movement Disorders, 2022, 37, 1004-1015.	3.9	9
2	Altered expression of the immunoregulatory ligand-receptor pair CD200-CD200R1 in the brain of Parkinson's disease patients. Npj Parkinson's Disease, 2022, 8, 27.	5.3	8
3	Smoking is associated with age at disease onset in Parkinson's disease. Parkinsonism and Related Disorders, 2022, 97, 79-83.	2.2	2
4	What have we learned from genome-wide association studies (GWAS) in Parkinson's disease?. Ageing Research Reviews, 2022, 79, 101648.	10.9	9
5	Analysis of DNM3 and VAMP4 as genetic modifiers of LRRK2 Parkinson's disease. Neurobiology of Aging, 2021, 97, 148.e17-148.e24.	3.1	16
6	Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets. JAMA Neurology, 2021, 78, 464.	9.0	95
7	Investigation of Autosomal Genetic Sex Differences in Parkinson's Disease. Annals of Neurology, 2021, 90, 35-42.	5.3	29
8	Transcriptome analysis in LRRK2 and idiopathic Parkinson's disease at different glucose levels. Npj Parkinson's Disease, 2021, 7, 109.	5.3	1
9	CCAAT/enhancer binding protein \hat{l}^{\prime} is a transcriptional repressor of $\hat{l}\pm$ -synuclein. Cell Death and Differentiation, 2020, 27, 509-524.	11.2	14
10	<scp>MicroRNA</scp> Deregulation in Blood Serum Identifies Multiple System Atrophy Altered Pathways. Movement Disorders, 2020, 35, 1873-1879.	3.9	15
11	Nonsteroidal <scp>Antiâ€inflammatory</scp> Use and <scp><i>LRRK2</i></scp> Parkinson's Disease Penetrance. Movement Disorders, 2020, 35, 1755-1764.	3.9	57
12	Peripheral insulin and amylin levels in Parkinson's disease. Parkinsonism and Related Disorders, 2020, 79, 91-96.	2.2	20
13	Disrupted Mitochondrial and Metabolic Plasticity Underlie Comorbidity between Age-Related and Degenerative Disorders as Parkinson Disease and Type 2 Diabetes Mellitus. Antioxidants, 2020, 9, 1063.	5.1	8
14	Transcriptomic differences in MSA clinical variants. Scientific Reports, 2020, 10, 10310.	3.3	7
15	Penetrance of Parkinson's Disease in <i>LRRK2</i> p.G2019S Carriers Is Modified by a Polygenic Risk Score. Movement Disorders, 2020, 35, 774-780.	3.9	57
16	MTOR Pathway-Based Discovery of Genetic Susceptibility to L-DOPA-Induced Dyskinesia in Parkinson's Disease Patients. Molecular Neurobiology, 2019, 56, 2092-2100.	4.0	17
17	Whole-genome DNA hyper-methylation in iPSC-derived dopaminergic neurons from Parkinson's disease patients. Clinical Epigenetics, 2019, 11, 108.	4.1	16
18	Accumulation of mitochondrial 7S DNA in idiopathic and LRRK2 associated Parkinson's disease. EBioMedicine, 2019, 48, 554-567.	6.1	28

#	Article	IF	CITATIONS
19	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	10.2	1,414
20	The Genetic Architecture of Parkinson Disease in Spain: Characterizing Populationâ€6pecific Risk, Differential Haplotype Structures, and Providing Etiologic Insight. Movement Disorders, 2019, 34, 1851-1863.	3.9	47
21	SNCA and mTOR Pathway Single Nucleotide Polymorphisms Interact to Modulate the Age at Onset of Parkinson's Disease. Movement Disorders, 2019, 34, 1333-1344.	3.9	21
22	Cerebrospinal fluid cytokines in multiple system atrophy: A cross-sectional Catalan MSA registry study. Parkinsonism and Related Disorders, 2019, 65, 3-12.	2.2	26
23	HLA and microtubule-associated protein tau H1 haplotype associations in anti-IgLON5 disease. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, .	6.0	55
24	Parkinson's disease as a systemic pathology. Aging, 2019, 11, 1081-1082.	3.1	3
25	Mitochondrial and autophagic alterations in skin fibroblasts from Parkinson disease patients with Parkin mutations. Aging, 2019, 11, 3750-3767.	3.1	25
26	αâ€synuclein (<i>SNCA</i>) but not dynamin 3 (<i>DNM3</i>) influences age at onset of leucineâ€rich repeat kinase 2 (LRRK2) Parkinson's disease in Spain. Movement Disorders, 2018, 33, 637-641.	3.9	25
27	Transcriptional alterations in skin fibroblasts from Parkinson's disease patients with parkin mutations. Neurobiology of Aging, 2018, 65, 206-216.	3.1	13
28	The Small GTPase RAC1/CED-10 Is Essential in Maintaining Dopaminergic Neuron Function and Survival Against α-Synuclein-Induced Toxicity. Molecular Neurobiology, 2018, 55, 7533-7552.	4.0	40
29	Cerebrospinal fluid levels of coenzyme Q10 are reduced in multiple system atrophy. Parkinsonism and Related Disorders, 2018, 46, 16-23.	2.2	32
30	Advances in Parkinson's Disease: 200 Years Later. Frontiers in Neuroanatomy, 2018, 12, 113.	1.7	102
31	Exhaustion of mitochondrial and autophagic reserve may contribute to the development of LRRK2 G2019S -Parkinson's disease. Journal of Translational Medicine, 2018, 16, 160.	4.4	22
32	MicroRNA alterations in iPSC-derived dopaminergic neurons from Parkinson disease patients. Neurobiology of Aging, 2018, 69, 283-291.	3.1	55
33	<i>MAPT</i> association with REM sleep behavior disorder. Neurology: Genetics, 2017, 3, e131.	1.9	10
34	A Common Variant in the MC1R Gene (p.V92M) is associated with Alzheimer's Disease Risk. Journal of Alzheimer's Disease, 2017, 56, 1065-1074.	2.6	5
35	The prodromal phase of leucineâ€rich repeat kinase 2–associated Parkinson disease: Clinical and imaging Studies. Movement Disorders, 2017, 32, 726-738.	3.9	48
36	Penetrance estimate of <i>LRRK2</i> p.G2019S mutation in individuals of nonâ€Ashkenazi Jewish ancestry. Movement Disorders, 2017, 32, 1432-1438.	3.9	126

Rubén FernÃindez-Santiago

#	Article	IF	CITATIONS
37	CSF microRNA Profiling in Alzheimer's Disease: a Screening and Validation Study. Molecular Neurobiology, 2017, 54, 6647-6654.	4.0	45
38	Discovering the 3′ UTR-mediated regulation of alpha-synuclein. Nucleic Acids Research, 2017, 45, 12888-12903.	14.5	32
39	A Novel p.Glu298Lys Mutation in the ACMSD Gene in Sporadic Parkinson's Disease. Journal of Parkinson's Disease, 2017, 7, 459-463.	2.8	15
40	Epigenetic Research of Neurodegenerative Disorders Using Patient iPSC-Based Models. Stem Cells International, 2016, 2016, 1-16.	2.5	13
41	Motor and nonmotor heterogeneity of <i>LRRK2</i> â€related and idiopathic Parkinson's disease. Movement Disorders, 2016, 31, 1192-1202.	3.9	102
42	Reply. Annals of Neurology, 2016, 79, 161-163.	5.3	3
43	Reply. Annals of Neurology, 2016, 79, 868-868.	5.3	0
44	Urinary LRRK2 phosphorylation predicts parkinsonian phenotypes in G2019S <i>LRRK2</i> carriers. Neurology, 2016, 86, 994-999.	1.1	114
45	Absence of <i>LRRK2</i> mutations in a cohort of patients with idiopathic REM sleep behavior disorder. Neurology, 2016, 86, 1072-1073.	1.1	30
46	Aberrant epigenome in <scp>iPSC</scp> â€derived dopaminergic neurons from Parkinson's disease patients. EMBO Molecular Medicine, 2015, 7, 1529-1546.	6.9	117
47	Reply. Annals of Neurology, 2015, 78, 153-154.	5.3	1
48	Sleep Disorders in Parkinsonian and Nonparkinsonian LRRK2 Mutation Carriers. PLoS ONE, 2015, 10, e0132368.	2.5	67
49	The <scp><i>MC1R</i></scp> melanoma risk variant p. <scp>R160W</scp> is associated with <scp>P</scp> arkinson disease. Annals of Neurology, 2015, 77, 889-894.	5.3	52
50	Micro <scp>RNA</scp> association with synucleinopathy conversion in rapid eye movement behavior disorder. Annals of Neurology, 2015, 77, 895-901.	5.3	50
51	Parkin loss of function contributes to RTP801 elevation and neurodegeneration in Parkinson's disease. Cell Death and Disease, 2014, 5, e1364-e1364.	6.3	40
52	Identification of blood serum microâ€RNAs associated with idiopathic and <i>LRRK2</i> Parkinson's disease. Journal of Neuroscience Research, 2014, 92, 1071-1077.	2.9	122
53	Fused in Sarcoma (FUS) gene mutations are not a frequent cause of essential tremor in Europeans. Neurobiology of Aging, 2013, 34, 2441.e9-2441.e11.	3.1	22
54	Mutant superoxide dismutase-1 indistinguishable from wild-type causes ALS. Human Molecular Genetics, 2012, 21, 3568-3574.	2.9	47

#	Article	IF	CITATIONS
55	Age at Onset in LRRK2-Associated PD is Modified by SNCA Variants. Journal of Molecular Neuroscience, 2012, 48, 245-247.	2.3	34
56	No evidence of association of FLJ10986 and ITPR2 with ALS in a large German cohort. Neurobiology of Aging, 2011, 32, 551.e1-551.e4.	3.1	22
57	Lack of interaction of SNCA and MAPT genotypes in Parkinson's disease. European Journal of Neurology, 2011, 18, e32-e32.	3.3	12
58	Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis. Annals of Neurology, 2011, 70, 964-973.	5.3	168
59	The human G93A SOD1 phenotype closely resembles sporadic amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 764-767.	1.9	25
60	Meta-analysis of vascular endothelial growth factor variations in amyotrophic lateral sclerosis: increased susceptibility in male carriers of the -2578AA genotype. Journal of Medical Genetics, 2009, 46, 840-846.	3.2	70
61	Identification of novel Angiogenin (ANG) gene missense variants in German patients with amyotrophic lateral sclerosis. Journal of Neurology, 2009, 256, 1337-1342.	3.6	60
62	Possible gender-dependent association of vascular endothelial growth factor (VEGF) gene and ALS. Neurology, 2006, 66, 1929-1931.	1.1	29