
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4588907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intracellular persistence of <i>Staphylococcus aureus</i> in endothelial cells is promoted by the absence of phenol-soluble modulins. Virulence, 2021, 12, 1186-1198.	4.4	17
2	The Expandables: Cracking the Staphylococcal Cell Wall for Expansion Microscopy. Frontiers in Cellular and Infection Microbiology, 2021, 11, 644750.	3.9	7
3	Staphylococcus aureus α-Toxin Induces Acid Sphingomyelinase Release From a Human Endothelial Cell Line. Frontiers in Microbiology, 2021, 12, 694489.	3.5	4
4	Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells. PLoS Pathogens, 2021, 17, e1009874.	4.7	18
5	Identification of a Novel LysR-Type Transcriptional Regulator in Staphylococcus aureus That Is Crucial for Secondary Tissue Colonization during Metastatic Bloodstream Infection. MBio, 2020, 11, .	4.1	7
6	Intracellular Staphylococcus aureus Perturbs the Host Cell Ca ²⁺ Homeostasis To Promote Cell Death. MBio, 2020, 11, .	4.1	20
7	Armadillo repeat-containing protein 1 is a dual localization protein associated with mitochondrial intermembrane space bridging complex. PLoS ONE, 2019, 14, e0218303.	2.5	15
8	In or out: Phagosomal escape of <i>Staphylococcus aureus</i> . Cellular Microbiology, 2019, 21, e12997.	2.1	66
9	Pulmonary infection of cystic fibrosis mice with <i>Staphylococcus aureus</i> requires expression of α-toxin. Biological Chemistry, 2018, 399, 1203-1213.	2.5	16
10	Inside job: Staphylococcus aureus host-pathogen interactions. International Journal of Medical Microbiology, 2018, 308, 607-624.	3.6	148
11	Staphylococcus aureus Alpha-Toxin Disrupts Endothelial-Cell Tight Junctions via Acid Sphingomyelinase and Ceramide. Infection and Immunity, 2018, 86, .	2.2	37
12	Long Noncoding RNA SSR42 Controls Staphylococcus aureus Alpha-Toxin Transcription in Response to Environmental Stimuli. Journal of Bacteriology, 2018, 200, .	2.2	15
13	<i>Chlamydia</i> preserves the mitochondrial network necessary for replication via microRNA-dependent inhibition of fission. Journal of Cell Biology, 2017, 216, 1071-1089.	5.2	102
14	Staphylococcus aureus α-Toxin Induces Inflammatory Cytokines via Lysosomal Acid Sphingomyelinase and Ceramides. Cellular Physiology and Biochemistry, 2017, 43, 2170-2184.	1.6	32
15	WEclMon – A simple and robust camera-based system to monitor Drosophila eclosion under optogenetic manipulation and natural conditions. PLoS ONE, 2017, 12, e0180238.	2.5	7
16	Natural mutations in a <i>Staphylococcus aureus</i> virulence regulator attenuate cytotoxicity but permit bacteremia and abscess formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3101-10.	7.1	103
17	Post-invasion events after infection with Staphylococcus aureus are strongly dependent on both the host cell type and the infecting S.Âaureus strain. Clinical Microbiology and Infection, 2016, 22, 799-809.	6.0	152
18	Quantitative Proteomics Reveals the Dynamics of Protein Phosphorylation in Human Bronchial Epithelial Cells during Internalization, Phagosomal Escape, and Intracellular Replication of <i>Staphylococcus aureus</i> . Journal of Proteome Research, 2016, 15, 4369-4386.	3.7	8

#	Article	IF	CITATIONS
19	Influence of Sae-regulated and Agr-regulated factors on the escape of <i>Staphylococcus aureus</i> from human macrophages. Cellular Microbiology, 2016, 18, 1172-1183.	2.1	67
20	Staphylococcus aureus Exploits a Non-ribosomal Cyclic Dipeptide to Modulate Survival within Epithelial Cells and Phagocytes. PLoS Pathogens, 2016, 12, e1005857.	4.7	48
21	Detailed Analysis of the Human Mitochondrial Contact Site Complex Indicate a Hierarchy of Subunits. PLoS ONE, 2015, 10, e0120213.	2.5	113
22	Sigma Factor SigB Is Crucial to Mediate Staphylococcus aureus Adaptation during Chronic Infections. PLoS Pathogens, 2015, 11, e1004870.	4.7	150
23	A Novel Point Mutation Promotes Growth Phase-Dependent Daptomycin Tolerance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2015, 59, 5366-5376.	3.2	90
24	Cytoplasmic replication of <i>Staphylococcus aureus</i> upon phagosomal escape triggered by phenol-soluble modulin α. Cellular Microbiology, 2014, 16, 451-465.	2.1	160
25	Transcriptional landscape and essential genes of Neisseria gonorrhoeae. Nucleic Acids Research, 2014, 42, 10579-10595.	14.5	74
26	Structure and function of the PorB porin from disseminating <i>Neisseria gonorrhoeae</i> . Biochemical Journal, 2013, 449, 631-642.	3.7	32
27	Complete Genome Sequence of Staphylococcus aureus 6850, a Highly Cytotoxic and Clinically Virulent Methicillin-Sensitive Strain with Distant Relatedness to Prototype Strains. Genome Announcements, 2013, 1, .	0.8	20
28	Pilus Phase Variation Switches Gonococcal Adherence to Invasion by Caveolin-1-Dependent Host Cell Signaling. PLoS Pathogens, 2013, 9, e1003373.	4.7	22
29	The Stringent Response of Staphylococcus aureus and Its Impact on Survival after Phagocytosis through the Induction of Intracellular PSMs Expression. PLoS Pathogens, 2012, 8, e1003016.	4.7	209
30	Intracellular staphylococcus aureus: Live-in and let die. Frontiers in Cellular and Infection Microbiology, 2012, 2, 43.	3.9	295
31	Expression of δ-toxin by Staphylococcus aureus mediates escape from phago-endosomes of human epithelial and endothelial cells in the presence of β-toxin. Cellular Microbiology, 2011, 13, 316-329.	2.1	107
32	Phosphoproteomic Identification of a PDX-1/14-3-3Îμ Interaction in Pancreatic Beta Cells. Hormone and Metabolic Research, 2011, 43, 165-170.	1.5	2
33	A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses. BMC Microbiology, 2010, 10, 282.	3.3	22
34	Bacteriocyte dynamics during development of a holometabolous insect, the carpenter ant Camponotus floridanus. BMC Microbiology, 2010, 10, 308.	3.3	72
35	Phagolysosomal Integrity Is Generally Maintained after <i>Staphylococcus aureus</i> Invasion of Nonprofessional Phagocytes but Is Modulated by Strain 6850. Infection and Immunity, 2010, 78, 3392-3403.	2.2	68
36	Rapid Modulation of the Organic Anion Transporting Polypeptide 2B1 (OATP2B1, SLCO2B1) Function by Protein Kinase C-mediated Internalization. Journal of Biological Chemistry, 2010, 285, 11336-11347.	3.4	75

#	Article	IF	CITATIONS
37	The Activation of the Rat Insulin Gene II by BETA2 and PDX-1 in Rat Insulinoma Cells Is Repressed by Pax6. Molecular Endocrinology, 2010, 24, 2331-2342.	3.7	8
38	Codon-improved fluorescent proteins in investigation of Staphylococcus aureus host pathogen interactions. Journal of Microbiological Methods, 2010, 83, 82-86.	1.6	22
39	Staphylococcus aureus host cell invasion and post-invasion events. International Journal of Medical Microbiology, 2010, 300, 170-175.	3.6	129
40	Staphylococcal Alpha-Toxin Is Not Sufficient To Mediate Escape from Phagolysosomes in Upper-Airway Epithelial Cells. Infection and Immunity, 2009, 77, 3611-3625.	2.2	36
41	The Spx paralogue MgsR (YqgZ) controls a subregulon within the general stress response of <i>Bacillus subtilis</i> . Molecular Microbiology, 2008, 69, 1104-1120.	2.5	41
42	Nonlinear Principal Component Analysis: Neural Network Models and Applications. Lecture Notes in Computational Science and Engineering, 2008, , 44-67.	0.3	91
43	A computational model of gene expression reveals early transcriptional events at the subtelomeric regions of the malaria parasite, Plasmodium falciparum. Genome Biology, 2008, 9, R88.	9.6	8
44	Cytoskeletal Components of an Invasion Machine—The Apical Complex of Toxoplasma gondii. PLoS Pathogens, 2006, 2, e13.	4.7	251
45	Systems biology in malaria research. Trends in Parasitology, 2005, 21, 393-395.	3.3	9
46	Multiple Functionally Redundant Signals Mediate Targeting to the Apicoplast in the Apicomplexan Parasite Toxoplasma gondii. Eukaryotic Cell, 2004, 3, 663-674.	3.4	59
47	Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nature Reviews Microbiology, 2004, 2, 203-216.	28.6	560
48	Dissecting Apicoplast Targeting in the Malaria Parasite Plasmodium falciparum. Science, 2003, 299, 705-708.	12.6	425
49	PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Research, 2003, 31, 212-215.	14.5	329
50	PlasmoDB: exploring genomics and post-genomics data of the malaria parasite,Plasmodium falciparum. Redox Report, 2003, 8, 317-320.	4.5	12
51	Energy metabolism in the apicomplexa. , 2003, , 154-169.		5
52	Mining thePlasmodiumgenome database to define organellar function: what does the apicoplast do?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 35-46.	4.0	70
53	PlasmoDB: the Plasmodium genome resource. An integrated database providing tools for accessing, analyzing and mapping expression and sequence data (both finished and unfinished). Nucleic Acids Research, 2002, 30, 87-90.	14.5	110
54	Amino-terminal control of transgenic protein expression levels in Toxoplasma gondii. Molecular and Biochemical Parasitology, 2002, 120, 285-289.	1.1	29

17

#	Article	IF	CITATIONS
55	Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 2002, 419, 498-511.	27.8	3,881
56	The Plasmodium genome database. Nature, 2002, 419, 490-492.	27.8	156
57	The highly reduced genome of an enslaved algal nucleus. Nature, 2001, 410, 1091-1096.	27.8	429
58	How Molecules Evolve in Eubacteria. Molecular Biology and Evolution, 2000, 17, 835-838.	8.9	45
59	Evidence for Nucleomorph to Host Nucleus Gene Transfer: Light-Harvesting Complex Proteins from Cryptomonads and Chlorarachniophytes. Protist, 2000, 151, 239-252.	1.5	64
60	A Nucleomorph-Encoded CbbX and the Phylogeny of RuBisCo Regulators. Molecular Biology and Evolution, 2000, 17, 576-583.	8.9	46
61	Chloroplast protein and centrosomal genes, a tRNA intron, and odd telomeres in an unusually compact eukaryotic genome, the cryptomonad nucleomorph. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 200-205.	7.1	71
62	Ancient Gene Duplication and Differential Gene Flow in Plastid Lineages: The GroEL/Cpn60 Example. Journal of Molecular Evolution, 1999, 48, 112-117.	1.8	20
63	The taxonomic position of Chlamydomyxa labyrinthuloides. European Journal of Phycology, 1999, 34, 97-108.	2.0	0

64 PlasmoDB: The Plasmodium Genome Resource. , 0, , 12-23.