
Haiyan Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4588424/publications.pdf Version: 2024-02-01

Ηλιγλη Ηι

#	Article	IF	CITATIONS
1	TarPmiR: a new approach for microRNA target site prediction. Bioinformatics, 2016, 32, 2768-2775.	4.1	144
2	H3K4me2 reliably defines transcription factor binding regions in different cells. Genomics, 2014, 103, 222-228.	2.9	85
3	Interpretation of deep learning in genomics and epigenomics. Briefings in Bioinformatics, 2021, 22, .	6.5	67
4	Transcriptional regulation in eukaryotic ribosomal protein genes. Genomics, 2007, 90, 421-423.	2.9	49
5	Transcriptional regulation of co-expressed microRNA target genes. Genomics, 2011, 98, 445-452.	2.9	43
6	PETModule: a motif module based approach for enhancer target gene prediction. Scientific Reports, 2016, 6, 30043.	3.3	35
7	EPIP: a novel approach for condition-specific enhancer–promoter interaction prediction. Bioinformatics, 2019, 35, 3877-3883.	4.1	33
8	MOPAT: a graph-based method to predict recurrent cis -regulatory modules from known motifs. Nucleic Acids Research, 2008, 36, 4488-4497.	14.5	29
9	Thousands of Cis-Regulatory Sequence Combinations Are Shared by Arabidopsis and Poplar Â. Plant Physiology, 2012, 158, 145-155.	4.8	29
10	Systematic identification of conserved motif modules in the human genome. BMC Genomics, 2010, 11, 567.	2.8	28
11	Prognostic cancer gene signatures share common regulatory motifs. Scientific Reports, 2017, 7, 4750.	3.3	27
12	SIOMICS: a novel approach for systematic identification of motifs in ChIP-seq data. Nucleic Acids Research, 2014, 42, e35-e35.	14.5	26
13	Systematic Prediction of cis-Regulatory Elements in the Chlamydomonas reinhardtii Genome Using Comparative Genomics Â. Plant Physiology, 2012, 160, 613-623.	4.8	25
14	Integrative analyses shed new light on human ribosomal protein gene regulation. Scientific Reports, 2016, 6, 28619.	3.3	25
15	Systematic discovery of cofactor motifs from ChIP-seq data by SIOMICS. Methods, 2015, 79-80, 47-51.	3.8	23
16	MBBC: an efficient approach for metagenomic binning based on clustering. BMC Bioinformatics, 2015, 16, 36.	2.6	23
17	Computational annotation of miRNA transcription start sites. Briefings in Bioinformatics, 2021, 22, 380-392.	6.5	23
18	MicroRNA modules prefer to bind weak and unconventional target sites. Bioinformatics, 2015, 31, 1366-1374.	4.1	21

Haiyan Hu

#	Article	IF	CITATIONS
19	BHap: a novel approach for bacterial haplotype reconstruction. Bioinformatics, 2019, 35, 4624-4631.	4.1	18
20	Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs. Nucleic Acids Research, 2015, 43, 74-83.	14.5	13
21	MBMC: An Effective Markov Chain Approach for Binning Metagenomic Reads from Environmental Shotgun Sequencing Projects. OMICS A Journal of Integrative Biology, 2016, 20, 470-479.	2.0	12
22	Vannilic acid ameliorates hyperglycemia-induced oxidative stress and inflammation in streptozotocin-induced diabetic rats. Journal of King Saud University - Science, 2020, 32, 2905-2911.	3.5	12
23	rRNAFilter: A Fast Approach for Ribosomal RNA Read Removal Without a Reference Database. Journal of Computational Biology, 2017, 24, 368-375.	1.6	11
24	CHIPMODULE: SYSTEMATIC DISCOVERY OF TRANSCRIPTION FACTORS AND THEIR COFACTORS FROM CHIP-SEQ DATA. , 2012, , .		10
25	CCmiR: a computational approach for competitive and cooperative microRNA binding prediction. Bioinformatics, 2018, 34, 198-206.	4.1	10
26	mixtureS: a novel tool for bacterial strain genome reconstruction from reads. Bioinformatics, 2021, 37, 575-577.	4.1	10
27	ChIPModule: systematic discovery of transcription factors and their cofactors from ChIP-seq data. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2013, , 320-31.	0.7	8
28	Mining patterns in disease classification forests. Journal of Biomedical Informatics, 2010, 43, 820-827.	4.3	7
29	When old metagenomic data meet newly sequenced genomes, a case study. PLoS ONE, 2018, 13, e0198773.	2.5	7
30	A two-stream convolutional neural network for microRNA transcription start site feature integration and identification. Scientific Reports, 2021, 11, 5625.	3.3	7
31	A systematic evaluation of the computational tools for IncRNA identification. Briefings in Bioinformatics, 2021, 22, .	6.5	7
32	A deep learning method for miRNA/isomiR target detection. Scientific Reports, 2022, 12, .	3.3	7
33	A systematic evaluation of the computational tools for ligand-receptor-based cell–cell interaction inference. Briefings in Functional Genomics, 2022, 21, 339-356.	2.7	7
34	Position-wise binding preference is important for miRNA target site prediction. Bioinformatics, 2020, 36, 3680-3686.	4.1	6
35	Shared distal regulatory regions may contribute to the coordinated expression of human ribosomal protein genes. Genomics, 2020, 112, 2886-2893.	2.9	5
36	Computational analyses of bacterial strains from shotgun reads. Briefings in Bioinformatics, 2022, 23, .	6.5	5

Haiyan Hu

#	Article	IF	CITATIONS
37	A new measurement of sequence conservation. BMC Genomics, 2009, 10, 623.	2.8	4
38	An efficient algorithm to identify coordinately activated transcription factors. Genomics, 2010, 95, 143-150.	2.9	4
39	Frequent Pattern Discovery in Multiple Biological Networks: Patterns and Algorithms. Statistics in Biosciences, 2012, 4, 157-176.	1.2	4
40	Urinary bladder hypertrophy characteristic of male ROMK Bartter's mice does not occur in female mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R334-R341.	1.8	4
41	Improving miRNA Target Prediction Using CLASH Data. Methods in Molecular Biology, 2019, 1970, 75-83.	0.9	4
42	Application of Deep Learning Models to MicroRNA Transcription Start Site Identification. , 2019, , .		4
43	Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins. Plant Molecular Biology, 2012, 80, 177-187.	3.9	3
44	PreDREM: a database of predicted DNA regulatory motifs from 349 human cell and tissue samples. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	3.0	3
45	An intriguing characteristic of enhancer-promoter interactions. BMC Genomics, 2021, 22, 163.	2.8	3
46	A systematic study of motif pairs that may facilitate enhancer–promoter interactions. Journal of Integrative Bioinformatics, 2022, 19, .	1.5	2
47	Networking pathways unveils association between obesity and non-insulin dependent diabetes mellitus. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2008, , 255-66.	0.7	2
48	Computational discovery of feature patterns in nucleosomal DNA sequences. Genomics, 2014, 104, 87-95.	2.9	1
49	Discover the semantic structure of human reference epigenome by differential latent dirichlet allocation. , 2017, , .		1
50	An Efficient Method to Identify Conditionally Activated Transcription Factors and their Corresponding Signal Transduction Pathway Segments. Bioinformatics and Biology Insights, 2009, 3, BBI.S3485.	2.0	0
51	Whole genome identification of target genes of transcription factors. , 2010, , .		0
52	Hierarchical order of gene expression levels. , 2010, , .		0
53	FlexSLiM. , 2018, , .		0