
Susanne J H Vijverberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4587876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The need for clean air: The way air pollution and climate change affect allergic rhinitis and asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2170-2184.	5.7	219
2	Toward clinically applicable biomarkers for asthma: An <scp>EAACI</scp> position paper. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1835-1851.	5.7	135
3	Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity, 2021, 54, 291-307.e7.	14.3	134
4	Earlyâ€life antibiotic exposure increases the risk of developing allergic symptoms later in life: A metaâ€analysis. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 971-986.	5.7	90
5	Childhood obesity in relation to poor asthma control and exacerbation: a meta-analysis. European Respiratory Journal, 2016, 48, 1063-1073.	6.7	89
6	Childhood asthma exacerbations and the Arg16 β2-receptor polymorphism: AÂmeta-analysis stratified by treatment. Journal of Allergy and Clinical Immunology, 2016, 138, 107-113.e5.	2.9	80
7	Breathomics from exhaled volatile organic compounds in pediatric asthma. Pediatric Pulmonology, 2017, 52, 1616-1627.	2.0	78
8	Early life antibiotic use and the risk of asthma and asthma exacerbations in children. Pediatric Allergy and Immunology, 2017, 28, 430-437.	2.6	77
9	Genomic DNA Hypomethylation by Histone Deacetylase Inhibition Implicates DNMT1 Nuclear Dynamics. Molecular and Cellular Biology, 2011, 31, 4119-4128.	2.3	57
10	Characteristics and treatment regimens across ERS SHARP severe asthma registries. European Respiratory Journal, 2020, 55, 1901163.	6.7	56
11	The crosstalk between microbiome and asthma: Exploring associations and challenges. Clinical and Experimental Allergy, 2019, 49, 1067-1086.	2.9	52
12	Sputum microbiome profiles identify severe asthma phenotypes of relative stability at 12 to 18 months. Journal of Allergy and Clinical Immunology, 2021, 147, 123-134.	2.9	51
13	Genomeâ€wide association study of inhaled corticosteroid response in admixed children with asthma. Clinical and Experimental Allergy, 2019, 49, 789-798.	2.9	50
14	Arg16 <i>ADRB2</i> genotype increases the risk of asthma exacerbation in children with a reported use of long-acting l² ₂ -agonists: results of the pacman cohort. Pharmacogenomics, 2013, 14, 1965-1971.	1.3	48
15	Genetic associations of the response to inhaled corticosteroids in asthma: a systematic review. Clinical and Translational Allergy, 2019, 9, 2.	3.2	39
16	Pharmacogenomics of inhaled corticosteroids and leukotriene modifiers: a systematic review. Clinical and Experimental Allergy, 2017, 47, 271-293.	2.9	36
17	Genetic Variations and Cisplatin Nephrotoxicity: A Systematic Review. Frontiers in Pharmacology, 2018, 9, 1111.	3.5	35
18	Pharmacogenetics of inhaled longâ€ecting beta2â€egonists in asthma: A systematic review. Pediatric Allergy and Immunology, 2018, 29, 705-714.	2.6	34

#	Article	IF	CITATIONS
19	Pharmacogenomics in Pediatric Patients: Towards Personalized Medicine. Paediatric Drugs, 2016, 18, 251-260.	3.1	33
20	Early-life antibiotic use and risk of asthma and eczema: results of a discordant twin study. European Respiratory Journal, 2020, 55, 1902021.	6.7	32
21	Treatment response heterogeneity in asthma: the role of genetic variation. Expert Review of Respiratory Medicine, 2018, 12, 55-65.	2.5	31
22	Rationale and design of the multiethnic Pharmacogenomics in Childhood Asthma consortium. Pharmacogenomics, 2017, 18, 931-943.	1.3	30
23	Treating severe asthma: Targeting the ILâ \in 5 pathway. Clinical and Experimental Allergy, 2021, 51, 992-1005.	2.9	30
24	What did we learn from multiple omics studies in asthma?. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2129-2145.	5.7	29
25	Omics for the future in asthma. Seminars in Immunopathology, 2020, 42, 111-126.	6.1	29
26	Pharmacogenetic analysis of <i>GLCCI1</i> in three north European pediatric asthma populations with a reported use of inhaled corticosteroids. Pharmacogenomics, 2014, 15, 799-806.	1.3	28
27	Exhaled volatile organic compounds as markers for medication use in asthma. European Respiratory Journal, 2020, 55, 1900544.	6.7	27
28	Childhood asthma in the new omics era: challenges and perspectives. Current Opinion in Allergy and Clinical Immunology, 2020, 20, 155-161.	2.3	26
29	Characteristics and severity of asthma in children with and without atopic conditions: a cross-sectional study. BMC Pediatrics, 2015, 15, 172.	1.7	25
30	The Impact of Genetic Polymorphisms in Organic Cation Transporters on Renal Drug Disposition. International Journal of Molecular Sciences, 2020, 21, 6627.	4.1	25
31	Exhaled NO is a poor marker of asthma control in children with a reported use of asthma medication: a pharmacyâ€based study. Pediatric Allergy and Immunology, 2012, 23, 529-536.	2.6	24
32	The use of pharmacogenomics, epigenomics, and transcriptomics to improve childhood asthma management: Where do we stand?. Pediatric Pulmonology, 2018, 53, 836-845.	2.0	23
33	Breastfeeding is associated with a decreased risk of childhood asthma exacerbations later in life. Pediatric Allergy and Immunology, 2017, 28, 649-654.	2.6	22
34	What do we need to transfer pharmacogenetics findings into the clinic?. Pharmacogenomics, 2018, 19, 589-592.	1.3	22
35	17q21 variant increases the risk of exacerbations in asthmatic children despite inhaled corticosteroids use. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2083-2088.	5.7	22
36	eNose breath prints as a surrogate biomarker for classifying patients with asthma by atopy. Journal of Allergy and Clinical Immunology, 2020, 146, 1045-1055.	2.9	22

#	Article	IF	CITATIONS
37	Outcome Definition Influences the Relationship between Genetic Polymorphisms of ERCC1, ERCC2, SLC22A2 and Cisplatin Nephrotoxicity in Adult Testicular Cancer Patients. Genes, 2019, 10, 364.	2.4	21
38	<i>ST13</i> polymorphisms and their effect on exacerbations in steroidâ€treated asthmatic children and young adults. Clinical and Experimental Allergy, 2015, 45, 1051-1059.	2.9	19
39	The need for precision medicine clinical trials in childhood asthma: rationale and design of the PUFFIN trial. Pharmacogenomics, 2017, 18, 393-401.	1.3	19
40	Role of genomics in asthma exacerbations. Current Opinion in Pulmonary Medicine, 2019, 25, 101-112.	2.6	17
41	Genome-wide association study of asthma exacerbations despite inhaled corticosteroid use. European Respiratory Journal, 2021, 57, 2003388.	6.7	17
42	Limited agreement between current and longâ€ŧerm asthma control in children: the PACMAN cohort study. Pediatric Allergy and Immunology, 2011, 22, 776-783.	2.6	16
43	Genetic variation in uncontrolled childhood asthma despite ICS treatment. Pharmacogenomics Journal, 2016, 16, 158-163.	2.0	16
44	<i>IL1RL1</i> gene variations are associated with asthma exacerbations in children and adolescents using inhaled corticosteroids. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 984-989.	5.7	14
45	Precision medicine and treatable traits in chronic airway diseases - where do we stand?. Current Opinion in Pulmonary Medicine, 2020, 26, 33-39.	2.6	14
46	Multiâ€ancestry genomeâ€wide association study of asthma exacerbations. Pediatric Allergy and Immunology, 2022, 33, .	2.6	14
47	High incidence of oral corticosteroids prescriptions in children with asthma in early childhood. Journal of Asthma, 2016, 53, 1012-1017.	1.7	13
48	Genomeâ€wide association studies of exacerbations in children using longâ€acting beta2â€agonists. Pediatric Allergy and Immunology, 2021, 32, 1197-1207.	2.6	13
49	Precision medicine in severe pediatric asthma. Current Opinion in Pulmonary Medicine, 2020, 26, 77-83.	2.6	11
50	Combined analysis of transcriptomic and genetic data for the identification of loci involved in glucocorticosteroid response in asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1238-1243.	5.7	11
51	A System Pharmacology Multi-Omics Approach toward Uncontrolled Pediatric Asthma. Journal of Personalized Medicine, 2021, 11, 484.	2.5	11
52	A multi-omics approach to delineate sputum microbiome-associated asthma inflammatory phenotypes. European Respiratory Journal, 2022, 59, 2102603.	6.7	11
53	Blood biomarkers in chronic airways diseases and their role in diagnosis and management. Expert Review of Respiratory Medicine, 2018, 12, 361-374.	2.5	10
54	Variants in genes coding for glutathione S-transferases and asthma outcomes in children. Pharmacogenomics, 2018, 19, 707-713.	1.3	10

#	Article	IF	CITATIONS
55	FCER2 T2206C variant associated with FENO levels in asthmatic children using inhaled corticosteroids: The PACMAN study. Clinical and Experimental Allergy, 2019, 49, 1429-1436.	2.9	10
56	Pharmacogenomic associations of adverse drug reactions in asthma: systematic review and research prioritisation. Pharmacogenomics Journal, 2020, 20, 621-628.	2.0	10
57	<i>ADRB2</i> Arg16 and the need for collaboration in childhood asthma pharmacogenomics. Pharmacogenomics, 2013, 14, 1937-1939.	1.3	9
58	Adolescents' experiences with patient engagement in respiratory medicine. Pediatric Pulmonology, 2021, 56, 211-216.	2.0	9
59	Increased dayâ€toâ€day fluctuations in exhaled breath profiles after a rhinovirus challenge in asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2488-2499.	5.7	9
60	Biologicals in childhood severe asthma: the European PERMEABLE survey on the <i>status quo</i> . ERJ Open Research, 2021, 7, 00143-2021.	2.6	9
61	The association between a genetic risk score for allergy and the risk of developing allergies in childhood—Results of the <scp>WHISTLER</scp> cohort. Pediatric Allergy and Immunology, 2018, 29, 72-77.	2.6	8
62	Crossâ€sectional biomarker comparisons in asthma monitoring using a longitudinal design: The eNose premise. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2690-2693.	5.7	8
63	Transcriptome changes during peanut oral immunotherapy and omalizumab treatment. Pediatric Allergy and Immunology, 2022, 33, e13682.	2.6	8
64	The Influence of Smoking Status on Exhaled Breath Profiles in Asthma and COPD Patients. Molecules, 2021, 26, 1357.	3.8	7
65	<i>ADRB2</i> haplotypes and asthma exacerbations in children and young adults: An individual participant data metaâ€analysis. Clinical and Experimental Allergy, 2021, 51, 1157-1171.	2.9	6
66	Identification of ROBO2 as a Potential Locus Associated with Inhaled Corticosteroid Response in Childhood Asthma. Journal of Personalized Medicine, 2021, 11, 733.	2.5	6
67	The Impact of Short-Term Exposure to Air Pollution on the Exhaled Breath of Healthy Adults. Sensors, 2021, 21, 2518.	3.8	5
68	Expert meeting report: towards a joint European roadmap to address the unmet needs and priorities of paediatric asthma patients on biologic therapy. ERJ Open Research, 2021, 7, 00381-2021.	2.6	5
69	Association between Genetic Variants and Cisplatin-Induced Nephrotoxicity: A Genome-Wide Approach and Validation Study. Journal of Personalized Medicine, 2021, 11, 1233.	2.5	5
70	Persistence of parentalâ€reported asthma at early ages: AÂlongitudinal twin study. Pediatric Allergy and Immunology, 2022, 33, e13762.	2.6	5
71	Comparison of Myelotoxicity and Nephrotoxicity Between Daily Low-Dose Cisplatin With Concurrent Radiation and Cyclic High-Dose Cisplatin in Non-Small Cell Lung Cancer Patients. Frontiers in Pharmacology, 2020, 11, 975.	3.5	4
72	Cisplatin-induced nephrotoxicity in childhood cancer: comparison between two countries. Pediatric Nephrology, 2023, 38, 593-604.	1.7	4

#	Article	IF	CITATIONS
73	Nonadherence to inhaled corticosteroids: A characteristic of the pediatric obeseâ€asthma phenotype?. Pediatric Pulmonology, 2021, 56, 948-956.	2.0	3
74	Association of endopeptidases, involved in SARSâ€CoVâ€2 infection, with microbial aggravation in sputum of severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1917-1921.	5.7	3
75	Identification of recent exacerbations in COPD patients by electronic nose. ERJ Open Research, 2020, 6, 00307-2020.	2.6	3
76	Severe acute asthma at the pediatric intensive care unit: can we link the clinical phenotypes to immunological endotypes?. Expert Review of Respiratory Medicine, 2022, 16, 25-34.	2.5	3
77	Asthma treatment patterns in Dutch children using medication dispensing data. Pediatric Allergy and Immunology, 2017, 28, 606-608.	2.6	2
78	Much ado about Biologicals: <i>Highlights of the Master Class on Biologicals, Prague, 2018</i> . Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 837-840.	5.7	2
79	Management of asthma in childhood: study protocol of a systematic evidence update by the Paediatric Asthma in Real Life (PeARL) Think Tank. BMJ Open, 2021, 11, e048338.	1.9	2
80	Exhaled Metabolite Patterns to Identify Recent Asthma Exacerbations. Metabolites, 2021, 11, 872.	2.9	2
81	Atopic dermatitis characteristics and medication-use patterns in school-age children with AD and asthma symptoms. Clinical and Experimental Dermatology, 2017, 42, 503-508.	1.3	1
82	Patterns of topical corticosteroids prescriptions in children with asthma. Pediatric Dermatology, 2018, 35, 378-383.	0.9	1
83	Genomics and Pharmacogenomics of Severe Childhood Asthma. , 2020, , 313-341.		Ο