
Hermann Steller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4586958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Programmed Cell Death in Animal Development and Disease. Cell, 2011, 147, 742-758.	28.9	1,487
2	Apoptotic Cells Can Induce Compensatory Cell Proliferation through the JNK and the Wingless Signaling Pathways. Developmental Cell, 2004, 7, 491-501.	7.0	546
3	Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nature Reviews Molecular Cell Biology, 2015, 16, 329-344.	37.0	502
4	The Drosophila Gene hid Is a Direct Molecular Target of Ras-Dependent Survival Signaling. Cell, 1998, 95, 331-341.	28.9	462
5	Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO Journal, 2000, 19, 589-597.	7.8	424
6	Caspase Activity and a Specific Cytochrome C Are Required for Sperm Differentiation in Drosophila. Developmental Cell, 2003, 4, 687-697.	7.0	391
7	DCP-1, a Drosophila Cell Death Protease Essential for Development. Science, 1997, 275, 536-540.	12.6	309
8	The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nature Cell Biology, 2002, 4, 445-450.	10.3	274
9	A Steroid-Triggered Transcriptional Hierarchy Controls Salivary Gland Cell Death during Drosophila Metamorphosis. Molecular Cell, 2000, 5, 445-455.	9.7	264
10	Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nature Cell Biology, 2002, 4, 432-438.	10.3	263
11	The Sept4 Septin Locus Is Required for Sperm Terminal Differentiation in Mice. Developmental Cell, 2005, 8, 353-364.	7.0	263
12	Apoptosis, Stem Cells, and Tissue Regeneration. Science Signaling, 2010, 3, re8.	3.6	258
13	Unfolded protein response in a Drosophila model for retinal degeneration. EMBO Journal, 2007, 26, 242-252.	7.8	253
14	disconnected: A locus required for neuronal pathway formation in the visual system of drosophila. Cell, 1987, 50, 1139-1153.	28.9	244
15	Regulation of apoptosis in Drosophila. Cell Death and Differentiation, 2008, 15, 1132-1138.	11.2	228
16	A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nature Cell Biology, 2000, 2, 915-921.	10.3	226
17	HAC-1, a Drosophila Homolog of APAF-1 and CED-4, Functions in Developmental and Radiation-Induced Apoptosis. Molecular Cell, 1999, 4, 745-755.	9.7	195
18	Disruption of a Behavioral Sequence by Targeted Death of Peptidergic Neurons in Drosophila. Neuron, 1997, 19, 813-823	8.1	194

#	Article	IF	CITATIONS
19	Regulation of Cell Number by MAPK-Dependent Control of Apoptosis. Developmental Cell, 2002, 2, 159-170.	7.0	187
20	The influence of retinal innervation on neurogenesis in the first optic ganglion of drosophila. Neuron, 1991, 6, 83-99.	8.1	183
21	Regulation of apoptosis by XIAP ubiquitin-ligase activity. Genes and Development, 2008, 22, 2256-2266.	5.9	171
22	The mitochondrial ARTS protein promotes apoptosis through targeting XIAP. EMBO Journal, 2004, 23, 1627-1635.	7.8	166
23	Requirement for DCP-1 Caspase DuringDrosophilaOogenesis. Science, 1998, 279, 230-234.	12.6	164
24	Blocking apoptosis prevents blindness in Drosophila retinal degeneration mutants. Nature, 1998, 391, 587-591.	27.8	153
25	Death by design: mechanism and control of apoptosis. Trends in Cell Biology, 1999, 9, M49-M52.	7.9	146
26	Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway. ELife, 2013, 2, e01004.	6.0	130
27	Proteasome Regulation by ADP-Ribosylation. Cell, 2013, 153, 614-627.	28.9	126
28	The two Drosophila cytochrome C proteins can function in both respiration and caspase activation. EMBO Journal, 2006, 25, 232-243.	7.8	118
29	Activation of thereaperGene during Ectopic Cell Killing inDrosophila. Developmental Biology, 1996, 180, 213-226.	2.0	112
30	Mechanisms and control of programmed cell death in invertebrates. Oncogene, 1998, 17, 3215-3223.	5.9	111
31	Kinesin-II Is Required for Axonal Transport of Choline Acetyltransferase in Drosophila. Journal of Cell Biology, 1999, 147, 507-518.	5.2	108
32	A Ubiquitin Ligase Complex Regulates Caspase Activation During Sperm Differentiation in Drosophila. PLoS Biology, 2007, 5, e251.	5.6	108
33	Spreading the word: non-autonomous effects of apoptosis during development, regeneration and disease. Development (Cambridge), 2015, 142, 3253-3262.	2.5	101
34	Biochemical and Genetic Interactions between Drosophila Caspases and the Proapoptotic Genes rpr , hid , and grim. Molecular and Cellular Biology, 2000, 20, 2907-2914.	2.3	98
35	A Conserved F Box Regulatory Complex Controls Proteasome Activity in Drosophila. Cell, 2011, 145, 371-382.	28.9	96
36	ER stress protects from retinal degeneration. EMBO Journal, 2009, 28, 1296-1307.	7.8	94

#	Article	IF	CITATIONS
37	Positional Information along the Dorsal–Ventral Axis of theDrosophilaEye: Graded Expression of thefour-jointedGene. Developmental Biology, 1996, 173, 428-446.	2.0	93
38	Deterin, a New Inhibitor of Apoptosis from Drosophila melanogaster. Journal of Biological Chemistry, 2000, 275, 22157-22165.	3.4	90
39	Migration of glial cells into retinal axon target field inDrosophila melanogaster. Journal of Neurobiology, 1996, 30, 359-373.	3.6	85
40	IAP-antagonists exhibit non-redundant modes of action through differential DIAP1 binding. EMBO Journal, 2003, 22, 6642-6652.	7.8	84
41	Facing death in the fly: genetic analysis of apoptosis in Drosophila. Trends in Genetics, 1997, 13, 222-226.	6.7	82
42	<i>Sept4</i> /ARTS is required for stem cell apoptosis and tumor suppression. Genes and Development, 2010, 24, 2282-2293.	5.9	82
43	<i>Sept4/</i> ARTS Regulates Stem Cell Apoptosis and Skin Regeneration. Science, 2013, 341, 286-289.	12.6	81
44	Coupling of Apoptosis and L/R Patterning Controls Stepwise Organ Looping. Current Biology, 2010, 20, 1773-1778.	3.9	78
45	Cytochrome câ€d regulates developmental apoptosis in the Drosophila retina. EMBO Reports, 2006, 7, 933-939.	4.5	73
46	Regulation of cell death by the ubiquitin–proteasome system. Current Opinion in Cell Biology, 2009, 21, 878-884.	5.4	71
47	Regulation of R7 and R8 differentiation by the spalt genes. Developmental Biology, 2004, 273, 121-133.	2.0	69
48	Ero1L, a thiol oxidase, is required for Notch signaling through cysteine bridge formation of the Lin12-Notch repeats in <i>Drosophila melanogaster </i> . Journal of Cell Biology, 2008, 182, 1113-1125.	5.2	64
49	The microtubule-targeting agent CA4P regresses leukemic xenografts by disrupting interaction with vascular cells and mitochondrial-dependent cell death. Blood, 2008, 111, 1951-1961.	1.4	64
50	<i>Drosophila</i> IAP antagonists form multimeric complexes to promote cell death. Journal of Cell Biology, 2010, 190, 1039-1052.	5.2	63
51	The contribution of mutant <i>GBA</i> to the development of Parkinson disease in <i>Drosophila</i> . Human Molecular Genetics, 2016, 25, ddw129.	2.9	60
52	Establishment of neuronal connectivity during development of the <i>Drosophila</i> larval visual system. Journal of Neurobiology, 1995, 28, 313-329.	3.6	57
53	Distinct Pathways Mediate UV-Induced Apoptosis in Drosophila Embryos. Developmental Cell, 2003, 4, 599-605.	7.0	56
54	A 43 kilobase cosmid P transposon rescues the fs(1)K10 morphogenetic locus and three adjacent drosophila developmental mutants. Cell, 1985, 40, 827-837.	28.9	52

#	Article	IF	CITATIONS
55	Programmed cell death in Drosophila. Neuron, 1994, 13, 1269-1274.	8.1	50
56	A novel F-box protein is required for caspase activation during cellular remodeling in <i>Drosophila</i> . Development (Cambridge), 2010, 137, 1679-1688.	2.5	50
57	PI31 Is an Adaptor Protein for Proteasome Transport in Axons and Required for Synaptic Development. Developmental Cell, 2019, 50, 509-524.e10.	7.0	50
58	Pathways regulating apoptosis during patterning and development. Current Opinion in Genetics and Development, 2007, 17, 294-299.	3.3	46
59	Detection of apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and acridine orange in Drosophila embryos and adult male gonads. Nature Protocols, 2006, 1, 1725-1731.	12.0	45
60	A comparison of programmed cell death between species. Genome Biology, 2000, 1, reviews0003.1.	9.6	38
61	Topography in the Drosophila visual system. Current Opinion in Neurobiology, 1993, 3, 53-59.	4.2	36
62	Regulation of the Proapoptotic ARTS Protein by Ubiquitin-mediatedDegradation. Journal of Biological Chemistry, 2005, 280, 25802-25810.	3.4	35
63	STAT92E is a positive regulator of <i>Drosophila</i> inhibitor of apoptosis 1 (DIAP/1) and protects against radiation-induced apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13805-13810.	7.1	35
64	The control of apoptosis in Drosophila. Trends in Cell Biology, 1995, 5, 74-78.	7.9	34
65	Two-color in vivo imaging of photoreceptor apoptosis and development in Drosophila. Developmental Biology, 2011, 351, 128-134.	2.0	34
66	Neuronal necrosis is regulated by a conserved chromatin-modifying cascade. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13960-13965.	7.1	32
67	PSMD5 Inactivation Promotes 26S Proteasome Assembly during Colorectal Tumor Progression. Cancer Research, 2018, 78, 3458-3468.	0.9	30
68	The zinc finger homeodomain-2 gene of Drosophila controls Notch targets and regulates apoptosis in the tarsal segments. Developmental Biology, 2014, 385, 350-365.	2.0	26
69	<i>Drosophila</i> Past1 is involved in endocytosis and is required for germline development and survival of the adult fly. Journal of Cell Science, 2009, 122, 471-480.	2.0	25
70	The proteasome regulator PI31 is required for protein homeostasis, synapse maintenance, and neuronal survival in mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24639-24650.	7.1	22
71	The complex of TRIP-Br1 and XIAP ubiquitinates and degrades multiple adenylyl cyclase isoforms. ELife, 2017, 6, .	6.0	18
72	Drosophila p53: meeting the Grim Reaper. Nature Cell Biology, 2000, 2, E100-E102.	10.3	17

#	Article	IF	CITATIONS
73	The pathogenic human Torsin A in Drosophila activates the unfolded protein response and increases susceptibility to oxidative stress. BMC Genomics, 2015, 16, 338.	2.8	17
74	Ferritin Assembly in Enterocytes of Drosophila melanogaster. International Journal of Molecular Sciences, 2016, 17, 27.	4.1	16
75	The Conserved RNA Exonuclease Rexo5 Is Required for 3′ End Maturation of 28S rRNA, 5S rRNA, and snoRNAs. Cell Reports, 2017, 21, 758-772.	6.4	15
76	Thiostrepton, a Natural Compound That Triggers Heat Shock Response and Apoptosis in Human Cancer Cells: A Proteomics Investigation. Advances in Experimental Medicine and Biology, 2014, 806, 443-451.	1.6	13
77	Thiostrepton interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates. Journal of Cellular and Molecular Medicine, 2015, 19, 2181-2192.	3.6	13
78	The cAMP effector PKA mediates Moody GPCR signaling in Drosophila blood–brain barrier formation and maturation. ELife, 2021, 10, .	6.0	11
79	Isolating Hair Follicle Stem Cells and Epidermal Keratinocytes from Dorsal Mouse Skin. Journal of Visualized Experiments, 2016, , .	0.3	9
80	Staying alive: apoptosome feedback inhibition. Nature Cell Biology, 2008, 10, 1387-1388.	10.3	6
81	A Gain-of-Function Germline Mutation in Drosophila ras1 Affects Apoptosis and Cell Fate during Development. PLoS ONE, 2011, 6, e23535.	2.5	6
82	Axin proteolysis by Iduna is required for the regulation of stem cell proliferation and intestinal homeostasis in <i>Drosophila</i> . Development (Cambridge), 2019, 146, .	2.5	6
83	Krebs Cycle Moonlights in Caspase Regulation. Developmental Cell, 2016, 37, 1-2.	7.0	4
84	Past1 Modulates Drosophila Eye Development. PLoS ONE, 2017, 12, e0169639.	2.5	2
85	Developmental apoptosis in health and disease. , 2005, , 49-74.		1