Shoubhik Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4586953/publications.pdf Version: 2024-02-01

SHOURHIK DAS

#	Article	IF	CITATIONS
1	Photocatalysis: A Green Tool for Redox Reactions. Synlett, 2022, 33, 129-149.	1.8	23
2	Applications of Photoredox Catalysis for the Radical-Induced Cleavage of C–C Bonds. Synthesis, 2022, 54, 3383-3398.	2.3	14
3	On the product selectivity in the electrochemical reductive cleavage of 2-phenoxyacetophenone, a lignin model compound. Green Chemistry Letters and Reviews, 2022, 15, 153-161.	4.7	10
4	Lignin-Supported Heterogeneous Photocatalyst for the Direct Generation of H ₂ O ₂ from Seawater. Journal of the American Chemical Society, 2022, 144, 2603-2613.	13.7	80
5	Direct Solar Energy-Mediated Synthesis of Tertiary Benzylic Alcohols Using a Metal-Free Heterogeneous Photocatalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 530-540.	6.7	25
6	Integrated strategy for the synthesis of aromatic building blocks via upcycling of real-life plastic wastes. CheM, 2022, 8, 2472-2484.	11.7	33
7	Nature inspired singlet oxygen generation to access α-amino carbonyl compounds <i>via</i> 1,2-acyl migration. Green Chemistry, 2021, 23, 379-387.	9.0	31
8	Oxidative Transformation of Biomass into Formic Acid. European Journal of Organic Chemistry, 2021, 2021, 1331-1343.	2.4	17
9	Photochemical reduction of carbon dioxide to formic acid. Green Chemistry, 2021, 23, 2553-2574.	9.0	61
10	CO ₂ -Promoted Reactions: An Emerging Concept for the Synthesis of Fine Chemicals and Pharmaceuticals. ACS Catalysis, 2021, 11, 3414-3442.	11.2	73
11	Atomic-Level Understanding for the Enhanced Generation of Hydrogen Peroxide by the Introduction of an Aryl Amino Group in Polymeric Carbon Nitrides. ACS Catalysis, 2021, 11, 14087-14101.	11.2	33
12	Visibleâ€Lightâ€Mediated Dearomatisation of Indoles and Pyrroles to Pharmaceuticals and Pesticides. Chemistry - A European Journal, 2020, 26, 390-395.	3.3	67
13	Transition Metalâ€Free Synthesis of Carbamates Using CO ₂ as the Carbon Source. ChemSusChem, 2020, 13, 6246-6258.	6.8	46
14	Deal;Photoredox Catalysis for the Cycloaddition Reactions. ChemCatChem, 2020, 12, 6173-6185.	3.7	23
15	A metal-free heterogeneous photocatalyst for the selective oxidative cleavage of C bonds in aryl olefins <i>via</i> harvesting direct solar energy. Green Chemistry, 2020, 22, 4516-4522.	9.0	84
16	Catalytic transformation of CO ₂ into C1 chemicals using hydrosilanes as a reducing agent. Green Chemistry, 2020, 22, 1800-1820.	9.0	111
17	Metal-free photocatalysts for the oxidation of non-activated alcohols and the oxygenation of tertiary amines performed in air or oxygen. Nature Protocols, 2020, 15, 822-839.	12.0	62
18	A simple ketone as an efficient metal-free catalyst for visible-light-mediated Diels–Alder and aza-Diels–Alder reactions. Green Chemistry, 2019, 21, 1916-1920.	9.0	50

SHOUBHIK DAS

#	Article	IF	CITATIONS
19	Metalâ€Free Photocatalysts for Câ^'H Bond Oxygenation Reactions with Oxygen as the Oxidant. ChemSusChem, 2019, 12, 2898-2910.	6.8	95
20	CO ₂ -Catalyzed Oxidation of Benzylic and Allylic Alcohols with DMSO. ACS Catalysis, 2018, 8, 3030-3034.	11.2	64
21	Metal-Free Catalyst for Visible-Light-Induced Oxidation of Unactivated Alcohols Using Air/Oxygen as an Oxidant. ACS Catalysis, 2018, 8, 5425-5430.	11.2	137
22	CO ₂ -Catalyzed Efficient Dehydrogenation of Amines with Detailed Mechanistic and Kinetic Studies. ACS Catalysis, 2018, 8, 11679-11687.	11.2	60
23	CO2-catalyzed/promoted transformation of organic functional groups. Tetrahedron Letters, 2018, 59, 3821-3828.	1.4	34
24	Visible-Light-Mediated Efficient Metal-Free Catalyst for α-Oxygenation of Tertiary Amines to Amides. ACS Catalysis, 2018, 8, 6659-6664.	11.2	119
25	N-formylation and N-methylation of amines using metal-free N-heterocyclic carbene catalysts and CO2 as carbon source. Nature Protocols, 2017, 12, 417-428.	12.0	76
26	CO ₂ -assisted synthesis of non-symmetric α-diketones directly from aldehydes <i>via</i> C–C bond formation. Green Chemistry, 2017, 19, 5356-5360.	9.0	48
27	Delineating the Mechanism of Ionic Liquids in the Synthesis of Quinazolineâ€2,4(1 <i>H</i> ,3 <i>H</i>)â€dione from 2â€Aminobenzonitrile and CO ₂ . Angewandte Chemie, 2017, 129, 10695-10699.	2.0	42
28	Delineating the Mechanism of Ionic Liquids in the Synthesis of Quinazolineâ€2,4(1 <i>H</i> ,3 <i>H</i>)â€dione from 2â€Aminobenzonitrile and CO ₂ . Angewandte Chemie - International Edition, 2017, 56, 10559-10563.	13.8	59
29	A Rhodium Nanoparticle–Lewis Acidic Ionic Liquid Catalyst for the Chemoselective Reduction of Heteroarenes. Angewandte Chemie - International Edition, 2016, 55, 292-296.	13.8	112
30	Synthesis of cyclic carbonates from diols and CO ₂ catalyzed by carbenes. Chemical Communications, 2016, 52, 10787-10790.	4.1	71
31	Carbon Dioxide Based Nâ€Formylation of Amines Catalyzed by Fluoride and Hydroxide Anions. ChemCatChem, 2016, 8, 3338-3342.	3.7	86
32	Chemoselective Synthesis of Carbamates using CO ₂ as Carbon Source. ChemSusChem, 2016, 9, 1916-1920.	6.8	100
33	A General and Selective Rhodiumâ€Catalyzed Reduction of Amides, <i>N</i> â€Acyl Amino Esters, and Dipeptides Using Phenylsilane. Chemistry - A European Journal, 2016, 22, 7050-7053.	3.3	34
34	Thiazolium carbene catalysts for the fixation of CO ₂ onto amines. Chemical Communications, 2016, 52, 2497-2500.	4.1	124
35	Selective Rhodium atalyzed Reduction of Tertiary Amides in Amino Acid Esters and Peptides. Angewandte Chemie, 2015, 127, 12566-12570.	2.0	19
36	Selective Rhodium atalyzed Reduction of Tertiary Amides in Amino Acid Esters and Peptides. Angewandte Chemie - International Edition, 2015, 54, 12389-12393.	13.8	56

SHOUBHIK DAS

#	Article	IF	CITATIONS
37	Soft Approaches to CO2 Activation. Chimia, 2015, 69, 765.	0.6	14
38	Metalâ€Free Catalyst for the Chemoselective Methylation of Amines Using Carbon Dioxide as a Carbon Source. Angewandte Chemie - International Edition, 2014, 53, 12876-12879.	13.8	189
39	Hydrosilylation of Ketones: From Metal–Organic Frameworks to Simple Base Catalysts. Chemistry - an Asian Journal, 2010, 5, 2341-2345.	3.3	38
40	Enantioselective Synthesis of Amines: General, Efficient Ironâ€Catalyzed Asymmetric Transfer Hydrogenation of Imines. Angewandte Chemie - International Edition, 2010, 49, 8121-8125.	13.8	194
41	Zinc-Catalyzed Reduction of Amides: Unprecedented Selectivity and Functional Group Tolerance. Journal of the American Chemical Society, 2010, 132, 1770-1771.	13.7	345