Andrea E Munsterberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4586946/publications.pdf

Version: 2024-02-01

83 papers 6,805 citations

34 h-index 71685 **76** g-index

94 all docs 94 docs citations 94 times ranked 6780 citing authors

#	Article	IF	CITATIONS
1	Somite development and regionalisation of the vertebral axial skeleton. Seminars in Cell and Developmental Biology, 2022, 127, 10-16.	5.0	5
2	Investigating chromatin accessibility during development and differentiation by ATAC-sequencing to guide the identification of <i>cis</i> -regulatory elements. Biochemical Society Transactions, 2022, 50, 1167-1177.	3.4	3
3	Fine-tuning of the PAX-SIX-EYA-DACH network by multiple microRNAs controls embryo myogenesis. Developmental Biology, 2021, 469, 68-79.	2.0	3
4	Characterising open chromatin in chick embryos identifies cis-regulatory elements important for paraxial mesoderm formation and axis extension. Nature Communications, 2021, 12, 1157.	12.8	8
5	Expression analysis of chick Frizzled receptors during spinal cord development. Gene Expression Patterns, 2021, 39, 119167.	0.8	1
6	4D Live Imaging and Analysis of Chick Embryo Somites. Methods in Molecular Biology, 2021, 2179, 173-181.	0.9	0
7	The Chicken as a Model Organism to Study Heart Development. Cold Spring Harbor Perspectives in Biology, 2020, 12, a037218.	5.5	14
8	The <i>Pax6</i> master control gene initiates spontaneous retinal development via a self-organising Turing network. Development (Cambridge), 2020, 147, .	2.5	6
9	FZD10 regulates cell proliferation and mediates Wnt1 induced neurogenesis in the developing spinal cord. PLoS ONE, 2020, 15, e0219721.	2.5	11
10	Cardiac injections of AntagomiRs as a novel tool for knockdown of miRNAs during heart development. Developmental Biology, 2019, 445, 163-169.	2.0	2
11	Atg7-Mediated Autophagy Is Involved in the Neural Crest Cell Generation in Chick Embryo. Molecular Neurobiology, 2018, 55, 3523-3536.	4.0	10
12	microRNAs associated with early neural crest development in Xenopus laevis. BMC Genomics, 2018, 19, 59.	2.8	22
13	miR-133 mediated regulation of the hedgehog pathway orchestrates embryo myogenesis. Development (Cambridge), 2018, 145, .	2.5	28
14	4D imaging reveals stage dependent random and directed cell motion during somite morphogenesis. Scientific Reports, 2018, 8, 12644.	3.3	9
15	Detailed expression profile of all six Glypicans and their modifying enzyme Notum during chick embryogenesis and their role in dorsal-ventral patterning of the neural tube. Gene, 2017, 609, 38-51.	2.2	6
16	Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF- $1\hat{1}\pm$ /VEGF signalling. Scientific Reports, 2017, 7, 12651.	3.3	81
17	Robo signaling regulates the production of cranial neural crest cells. Experimental Cell Research, 2017, 361, 73-84.	2.6	11
18	4D visualisation and analysis of somite morphogenesis in live embryos using multi-photon microscopy. Mechanisms of Development, 2017, 145, S71.	1.7	O

#	Article	IF	Citations
19	microRNAs in skeletal muscle development. Seminars in Cell and Developmental Biology, 2017, 72, 67-76.	5.0	78
20	Editorial: Signaling Pathways in Embryonic Development. Frontiers in Cell and Developmental Biology, 2017, 5, 76.	3.7	42
21	The Early Stages of Heart Development: Insights from Chicken Embryos. Journal of Cardiovascular Development and Disease, 2016, 3, 12.	1.6	43
22	WNT and BMP regulate roadblocks toward cardiomyocyte differentiation: lessons learned from embryos inform human stem cell differentiation. Stem Cell Investigation, 2016, 3, 33-33.	3.0	0
23	Atlas Toolkit: Fast registration of 3D morphological datasets in the absence of landmarks. Scientific Reports, 2016, 6, 20732.	3.3	7
24	MicroRNA-10 modulates Hox genes expression during Nile tilapia embryonic development. Mechanisms of Development, 2016, 140, 12-18.	1.7	20
25	Proper autophagy is indispensable for angiogenesis during chick embryo development. Cell Cycle, 2016, 15, 1742-1754.	2.6	19
26	The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification. Developmental Biology, 2016, 416, 361-372.	2.0	12
27	Sprouty2 mediated tuning of signalling is essential for somite myogenesis. BMC Medical Genomics, 2015, 8, S8.	1.5	2
28	A Database of microRNA Expression Patterns in Xenopus laevis. PLoS ONE, 2015, 10, e0138313.	2.5	21
29	Third Report on Chicken Genes and Chromosomes 2015. Cytogenetic and Genome Research, 2015, 145, 78-179.	1.1	97
30	Misexpression of <i>BRE </i> gene in the developing chick neural tube affects neurulation and somitogenesis. Molecular Biology of the Cell, 2015, 26, 978-992.	2.1	12
31	Klhl 31 attenuates \hat{I}^2 -catenin dependent Wnt signaling and regulates embryo myogenesis. Developmental Biology, 2015, 402, 61-71.	2.0	17
32	myomiR-dependent switching of BAF60 variant incorporation into Brg1 chromatin remodeling complexes during embryo myogenesis. Development (Cambridge), 2014, 141, 3378-3387.	2.5	58
33	Canonical Wnt signals combined with suppressed TGF \hat{I}^2/BMP pathways promote renewal of the native human colonic epithelium. Gut, 2014, 63, 610-621.	12.1	75
34	Combinational electroporation and transplantation approach to studying gene functions in avian embryos. Science Bulletin, 2014, 59, 616-624.	1.7	0
35	Endoderm contributes to endocardial composition during cardiogenesis. Science Bulletin, 2014, 59, 2749-2755.	1.7	2
36	Smad1 transcription factor integrates BMP2 and Wnt3a signals in migrating cardiac progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7337-7342.	7.1	40

#	Article	IF	CITATIONS
37	FGF negative regulation during early myogenesis. BMC Genomics, 2014, 15, .	2.8	O
38	Fgf negative regulators control early chick somite myogenesis. BMC Genomics, 2014, 15, .	2.8	0
39	Retention of Stem Cell Plasticity in Avian Primitive Streak Cells and the Effects of Local Microenvironment. Anatomical Record, 2013, 296, 533-543.	1.4	6
40	Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation. Journal of Cell Science, 2012, 125, 3590-3600.	2.0	117
41	microRNAs in skeletal muscle differentiation and disease. Clinical Science, 2012, 123, 611-625.	4.3	7 5
42	The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis and Rheumatism, 2012, 64, 1909-1919.	6.7	204
43	Identification and characterisation of micrornas involved in chondrocyte differentiation and osteoarthritis. Osteoarthritis and Cartilage, 2012, 20, S42.	1.3	2
44	Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation. Development (Cambridge), 2012, 139, e1-e1.	2.5	1
45	Fate Mapping Identifies the Origin of SHF/AHF Progenitors in the Chick Primitive Streak. PLoS ONE, 2012, 7, e51948.	2.5	25
46	Ingression, migration and early differentiation of cardiac progenitors. Frontiers in Bioscience - Landmark, 2011, 16, 2416.	3.0	6
47	MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11936-11941.	7.1	110
48	Time-Lapse Imaging of Chick Cardiac Precursor Cells. Methods in Molecular Biology, 2011, 769, 359-372.	0.9	5
49	066 IDENTIFICATION AND CHARACTERISATION OF MICRORNAS INVOLVED IN CHONDROCYTE DIFFERENTIATION AND OSTEOARTHRITIS. Osteoarthritis and Cartilage, 2010, 18, S37.	1.3	O
50	Wnt/Lef1 signaling acts via Pitx2 to regulate somite myogenesis. Developmental Biology, 2010, 337, 211-219.	2.0	67
51	High throughput sequencing of microRNAs in chicken somites. FEBS Letters, 2009, 583, 1422-1426.	2.8	62
52	13-P061 Wnt signalling via Pitx2 regulates somite and limb myogenesis. Mechanisms of Development, 2009, 126, S213.	1.7	2
53	13-P092 Klhl31 is regulated by myogenic signals in developing somites and modulates Wnt signaling in vitro and in vivo. Mechanisms of Development, 2009, 126, S222.	1.7	0
54	Klhl31 is associated with skeletal myogenesis and its expression is regulated by myogenic signals and Myf-5. Mechanisms of Development, 2009, 126, 852-862.	1.7	17

#	Article	IF	CITATIONS
55	The migration of paraxial and lateral plate mesoderm cells emerging from the late primitive streak is controlled by different Wnt signals. BMC Developmental Biology, 2008, 8, 63.	2.1	64
56	Multicellular rosette formation during cell ingression in the avian primitive streak. Developmental Dynamics, 2008, 237, 91-96.	1.8	25
57	Expression of avian <i>prickle</i> genes during early development and organogenesis. Developmental Dynamics, 2008, 237, 1442-1448.	1.8	15
58	Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Developmental Biology, 2008, 321, 491-499.	2.0	239
59	Wnt3a-mediated chemorepulsion controls movement patterns of cardiac progenitors and requires RhoA function. Development (Cambridge), 2008, 135, 1029-1037.	2.5	74
60	Cardiac progenitor migration and specification. Cell Adhesion and Migration, 2008, 2, 74-76.	2.7	9
61	The vertebrate spalt genes in development and disease. Developmental Biology, 2006, 293, 285-293.	2.0	105
62	FGFâ€4 signaling is involved in mirâ€206 expression in developing somites of chicken embryos. Developmental Dynamics, 2006, 235, 2185-2191.	1.8	82
63	The chicken <i>talpid³</i> gene encodesa novel protein essentialfor Hedgehog signaling. Genes and Development, 2006, 20, 1365-1377.	5.9	112
64	Feedback interactions between MKP3 and ERK MAP kinase control <i>scleraxis</i> expression and the specification of rib progenitors in the developing chick somite. Development (Cambridge), 2005, 132, 1305-1314.	2.5	97
65	Expression of csal1 in pre limb-bud chick embryos. International Journal of Developmental Biology, 2005, 49, 427-430.	0.6	11
66	Dynamic expression of Lef/Tcf family members and $\hat{l}^2\hat{a}\in \mathfrak{C}$ at enin during chick gastrulation, neurulation, and early limb development. Developmental Dynamics, 2004, 229, 703-707.	1.8	33
67	Negative Feedback Regulation of FGF Signaling Levels by Pyst1/MKP3 in Chick Embryos. Current Biology, 2003, 13, 1009-1018.	3.9	162
68	The Conserved Glutamine-rich Region of Chick Csal1 and Csal3 Mediates Protein Interactions with Other Spalt Family Members. Journal of Biological Chemistry, 2003, 278, 6560-6566.	3.4	52
69	Pax1 and Pax9 activate Bapx1 to induce chondrogenic differentiation in the sclerotome. Development (Cambridge), 2003, 130, 473-482.	2.5	128
70	Wnt6 marks sites of epithelial transformations in the chick embryo. Mechanisms of Development, 2002, 114, 143-148.	1.7	86
71	Cell Movement Patterns during Gastrulation in the Chick Are Controlled by Positive and Negative Chemotaxis Mediated by FGF4 and FGF8. Developmental Cell, 2002, 3, 425-437.	7.0	305
72	Fin development in a cartilaginous fish and the origin of vertebrate limbs. Nature, 2002, 416, 527-531.	27.8	113

#	Article	IF	CITATIONS
73	Cloning and expression of CSAL2, a new member of the spalt gene family in chick. Mechanisms of Development, 2001, 102, 227-230.	1.7	21
74	Vertebrate limb development $\hat{a} \in \text{``}$ the early stages in chick and mouse. Current Opinion in Genetics and Development, 2001, 11, 476-481.	3.3	83
75	In vivo analysis of the regulation of the anti-Müllerian hormone, as a marker of Sertoli cell differentiation during testicular development, reveals a multi-step process. Molecular Reproduction and Development, 2001, 59, 256-264.	2.0	26
76	csal1 Is Controlled by a Combination of FGF and Wnt Signals in Developing Limb Buds. Developmental Biology, 2000, 225, 447-458.	2.0	49
77	Ectopic Pax-3 Activates MyoD and Myf-5 Expression in Embryonic Mesoderm and Neural Tissue. Cell, 1997, 89, 139-148.	28.9	405
78	The role of positive and negative signals in somite patterning. Current Opinion in Neurobiology, 1996, 6, 57-63.	4.2	62
79	Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite Genes and Development, 1995, 9, 2911-2922.	5.9	463
80	Wiring diagrams: regulatory circuits and the control of skeletal myogenesis. Current Opinion in Cell Biology, 1994, 6, 432-442.	5.4	146
81	A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature, 1990, 346, 245-250.	27.8	1,552
82	Expression of a candidate sex-determining gene during mouse testis differentiation. Nature, 1990, 348, 450-452.	27.8	801
83	Cooperative Action of the Glucocorticoid Receptor and Transcription Factors. Cold Spring Harbor Symposia on Quantitative Biology, 1988, 53, 835-841.	1.1	12