Aaron Aponick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4586569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning StackPhim Ligands: Applications in Enantioselective Borylation and Alkynylation. Synthesis, 2022, 54, 2157-2164.	2.3	1
2	Prodrug-Based Targeting Approach for Inflammatory Bowel Diseases Therapy: Mechanistic Study of Phospholipid-Linker-Cyclosporine PLA2-Mediated Activation. International Journal of Molecular Sciences, 2022, 23, 2673.	4.1	5
3	PLA2-Triggered Activation of Cyclosporine-Phospholipid Prodrug as a Drug Targeting Approach in Inflammatory Bowel Disease Therapy. Pharmaceutics, 2022, 14, 675.	4.5	5
4	Configuration Sampling With Fiveâ€Membered Atropisomeric P , N â€Ligands. Angewandte Chemie - International Edition, 2021, 60, 19604-19608.	13.8	9
5	Configuration Sampling With Fiveâ€Membered Atropisomeric P , N â€Ligands. Angewandte Chemie, 2021, 133, 19756-19760.	2.0	1
6	Enantioselective Lactonization by Ï€â€Acidâ€Catalyzed Allylic Substitution: A Complement to Ï€â€Allylmetal Chemistry. Angewandte Chemie - International Edition, 2021, 60, 22224-22229.	13.8	8
7	Enantioselective Lactonization by Ï€â€Acidâ€Catalyzed Allylic Substitution: A Complement to Ï€â€Allylmetal Chemistry. Angewandte Chemie, 2021, 133, 22398-22403.	2.0	1
8	The Enantioselective Intermolecular Saegusa Allylation. ACS Catalysis, 2021, 11, 14842-14847.	11.2	3
9	Synthesis and Biological Evaluation of the Southern Hemisphere of Spirastrellolide A and Analogues. Journal of Organic Chemistry, 2020, 85, 13694-13709.	3.2	2
10	Lipids and Lipid-Processing Pathways in Drug Delivery and Therapeutics. International Journal of Molecular Sciences, 2020, 21, 3248.	4.1	41
11	Phospholipid Cyclosporine Prodrugs Targeted at Inflammatory Bowel Disease (IBD) Treatment: Design, Synthesis, and in Vitro Validation. ChemMedChem, 2020, 15, 1639-1644.	3.2	5
12	Lactone Synthesis by Enantioselective Orthogonal Tandem Catalysis. Angewandte Chemie, 2019, 131, 9585-9590.	2.0	5
13	Lactone Synthesis by Enantioselective Orthogonal Tandem Catalysis. Angewandte Chemie - International Edition, 2019, 58, 9485-9490.	13.8	15
14	Molecular Modeling-Guided Design of Phospholipid-Based Prodrugs. International Journal of Molecular Sciences, 2019, 20, 2210.	4.1	16
15	A Facile Enantioselective Alkynylation of Chromones. Angewandte Chemie - International Edition, 2019, 58, 8416-8420.	13.8	38
16	Phospholipid-Based Prodrugs for Colon-Targeted Drug Delivery: Experimental Study and In-Silico Simulations. Pharmaceutics, 2019, 11, 186.	4.5	16
17	A Facile Enantioselective Alkynylation of Chromones. Angewandte Chemie, 2019, 131, 8504-8508.	2.0	7
18	The prospects of lipidic prodrugs: an old approach with an emerging future. Future Medicinal Chemistry, 2019, 11, 2563-2571.	2.3	12

AARON APONICK

#	Article	IF	CITATIONS
19	Lipidic prodrug approach for improved oral drug delivery and therapy. Medicinal Research Reviews, 2019, 39, 579-607.	10.5	54
20	Enol Acetates: Versatile Substrates for the Enantioselective Intermolecular Tsuji Allylation. Journal of the American Chemical Society, 2018, 140, 16152-16158.	13.7	23
21	Prospects and Challenges of Phospholipid-Based Prodrugs. Pharmaceutics, 2018, 10, 210.	4.5	24
22	Catalytic Dehydrative Lactonization of Allylic Alcohols. Organic Letters, 2018, 20, 3034-3038.	4.6	12
23	Enantioselective Alkyne Conjugate Addition Enabled by Readily Tuned Atropisomeric <i>P</i> , <i>N</i> -Ligands. Journal of the American Chemical Society, 2017, 139, 3352-3355.	13.7	59
24	Incorporation of Axial Chirality into Phosphino-Imidazoline Ligands for Enantioselective Catalysis. ACS Catalysis, 2017, 7, 2133-2138.	11.2	55
25	Phospholipid-drug conjugates as a novel oral drug targeting approach for the treatment of inflammatory bowel disease. European Journal of Pharmaceutical Sciences, 2017, 108, 78-85.	4.0	28
26	Computational modeling and in-vitro/in-silico correlation of phospholipid-based prodrugs for targeted drug delivery in inflammatory bowel disease. Journal of Computer-Aided Molecular Design, 2017, 31, 1021-1028.	2.9	14
27	Catalytic Enantioselective Synthesis of Amino Skipped Diynes. Journal of the American Chemical Society, 2016, 138, 2150-2153.	13.7	62
28	Intermolecular Noncovalent Hydroxy-Directed Enantioselective Heck Desymmetrization of Cyclopentenol: Computationally Driven Synthesis of Highly Functionalized <i>cis</i> -4-Arylcyclopentenol Scaffolds. Journal of Organic Chemistry, 2016, 81, 2010-2018.	3.2	54
29	Phospholipid-Based Prodrugs for Drug Targeting in Inflammatory Bowel Disease: Computational Optimization and In-Vitro Correlation. Current Topics in Medicinal Chemistry, 2016, 16, 2543-2548.	2.1	18
30	Enantioselective Copper atalyzed Quinoline Alkynylation. Angewandte Chemie - International Edition, 2015, 54, 15202-15206.	13.8	111
31	Enantioselective Total Synthesis of (â^)â€Martinellic Acid. Angewandte Chemie - International Edition, 2015, 54, 15827-15830.	13.8	42
32	Diastereoselective Synthesis of Protected 1,3-Diols by Catalytic Diol Relocation. Organic Letters, 2015, 17, 5574-5577.	4.6	22
33	Tandem Gold-Catalyzed Dehydrative Cyclization/Diels–Alder Reactions: Facile Access to Indolocarbazole Alkaloids. Organic Letters, 2015, 17, 1754-1757.	4.6	31
34	Regioselectivity in the Au-catalyzed hydration and hydroalkoxylation of alkynes. Chemical Communications, 2015, 51, 8730-8741.	4.1	150
35	Synthesis of the Spirastrellolide A, B/C Spiroketal: Enabling Solutions for Problematic Au(I)-Catalyzed Spiroketalizations. Organic Letters, 2015, 17, 1902-1905.	4.6	9
36	Acortatarin A. Strategies and Tactics in Organic Synthesis, 2015, 11, 1-28.	0.1	0

AARON APONICK

#	Article	IF	CITATIONS
37	Flavonoids from each of the six structural groups reactivate BRM, a possible cofactor for the anticancer effects of flavonoids. Carcinogenesis, 2014, 35, 2183-2193.	2.8	21
38	Gold-Catalyzed Transformation of Unsaturated Alcohols. Topics in Current Chemistry, 2014, 357, 63-94.	4.0	13
39	Controlling Regiochemistry in the Gold-Catalyzed Synthesis of Unsaturated Spiroketals. Organic Letters, 2014, 16, 5320-5323.	4.6	34
40	Multiple Mechanisms in Pd(II)-Catalyzed S _N 2′ Reactions of Allylic Alcohols. Journal of Organic Chemistry, 2013, 78, 7664-7673.	3.2	27
41	Design, Preparation, and Implementation of an Imidazole-Based Chiral Biaryl P,N-Ligand for Asymmetric Catalysis. Journal of the American Chemical Society, 2013, 135, 14548-14551.	13.7	117
42	Synthesis of Saturated Heterocycles via Metal-Catalyzed Allylic Alkylation Reactions. Topics in Heterocyclic Chemistry, 2013, , 157-186.	0.2	8
43	The tandem intermolecular hydroalkoxylation/claisen rearrangement. Chemical Communications, 2013, 49, 4157-4159.	4.1	65
44	Pd ^{II} atalyzed Spiroketalization of Ketoallylic Diols. Chemistry - A European Journal, 2013, 19, 11613-11621.	3.3	20
45	Nitrogen Nucleophiles in Au atalyzed Dehydrative Cyclization Reactions. Israel Journal of Chemistry, 2013, 53, 923-931.	2.3	5
46	Strategies for Spiroketal Synthesis Based on Transition-Metal Catalysis. Synthesis, 2012, 44, 3699-3721.	2.3	66
47	The Importance of Hydrogen Bonding to Stereoselectivity and Catalyst Turnover in Gold-Catalyzed Cyclization of Monoallylic Diols. Journal of the American Chemical Society, 2012, 134, 16307-16318.	13.7	67
48	Total Synthesis of Acortatarin A Using a Pd(II)-Catalyzed Spiroketalization Strategy. Journal of Organic Chemistry, 2012, 77, 8410-8416.	3.2	37
49	Synthetic studies on the solanacol ABC ring system by cation-initiated cascade cyclization: implications for strigolactone biosynthesis. Organic and Biomolecular Chemistry, 2011, 9, 5350.	2.8	19
50	Chirality Transfer in Au-Catalyzed Cyclization Reactions of Monoallylic Diols: Selective Access to Specific Enantiomers Based on Olefin Geometry. Organic Letters, 2011, 13, 1330-1333.	4.6	72
51	A comparative study of the Au-catalyzed cyclization of hydroxy-substituted allylic alcohols and ethers. Beilstein Journal of Organic Chemistry, 2011, 7, 802-807.	2.2	35
52	Goldâ€Catalyzed Dehydrative Transformations of Unsaturated Alcohols. European Journal of Organic Chemistry, 2011, 2011, 6605-6617.	2.4	130
53	A highly adaptable catalyst/substrate system for the synthesis of substituted chromenes. Chemical Communications, 2010, 46, 6849.	4.1	63
54	An Extremely Facile Synthesis of Furans, Pyrroles, and Thiophenes by the Dehydrative Cyclization of Propargyl Alcohols. Organic Letters, 2009, 11, 4624-4627.	4.6	228

AARON APONICK

#	Article	IF	CITATIONS
55	Au-Catalyzed Cyclization of Monopropargylic Triols: An Expedient Synthesis of Monounsaturated Spiroketals. Organic Letters, 2009, 11, 121-124.	4.6	122
56	2â€(3â€Pyrrolinâ€1â€yl)â€1,4â€naphthoquinones: Photoactivated Alkylating Agents. European Journal of Organi Chemistry, 2008, 2008, 4264-4276.	^C 2.4	8
57	Au-Catalyzed Cyclization of Monoallylic Diols. Organic Letters, 2008, 10, 669-671.	4.6	116
58	Gold-Catalyzed Dehydrative Cyclization of Allylic Diols. Synthesis, 2008, 2008, 3356-3359.	2.3	37
59	A Convergent Pdâ€Catalyzed Asymmetric Allylic Alkylation of <i>dl</i> ―and <i>meso</i> â€Divinylethylene Carbonate: Enantioselective Synthesis of (+)â€Australine Hydrochloride and Formal Synthesis of Isoaltholactone. Chemistry - A European Journal, 2007, 13, 9547-9560.	3.3	62
60	Predicting the Stereochemistry of Diphenylphosphino Benzoic Acid (DPPBA)-Based Palladium-Catalyzed Asymmetric Allylic Alkylation Reactions:  A Working Model. Accounts of Chemical Research, 2006, 39, 747-760.	15.6	478
61	Palladium-Catalyzed Asymmetric Allylic Alkylation ofmeso-anddl-1,2-Divinylethylene Carbonate. Journal of the American Chemical Society, 2006, 128, 3931-3933.	13.7	99
62	Formal Synthesis ofAspidospermaAlkaloids via the Intramolecular [3 + 2] Cycloaddition of 2-Azapentdienyllithiums. Organic Letters, 2006, 8, 1661-1664.	4.6	30
63	Synthesis ofN,N-Bis(3-butenyl)amines from 2-Azaallyl Dication Synthetic Equivalents and Conversion to 2,3,6,7-Tetrahydroazepines by Ring-Closing Metathesis. Journal of Organic Chemistry, 2006, 71, 3533-3539.	3.2	17
64	Regioselective Organocadmium Alkylations of Substituted Quinones. Journal of Organic Chemistry, 2002, 67, 242-244.	3.2	15
65	Double Allylation Reactions of (2-Azaallyl)stannanes:  Synthesis of N,N-Bis(3-butenyl)amines and Their Conversion to 2,3,6,7-Tetrahydroazepines via Ring-Closing Metathesis. Organic Letters, 2001, 3, 1327-1330.	4.6	21
66	Studies on the asymmetric cycloaddition of 2-azaallyl anions with alkenes. Tetrahedron Letters, 2001, 42, 7361-7365.	1.4	13
67	Determining the Authenticity of Gemstones Using Raman Spectroscopy. Journal of Chemical Education, 1998, 75, 465.	2.3	21
68	Quinone Alkylation Using Organocadmium Reagents:Â A General Synthesis of Quinols. Journal of Organic Chemistry, 1998, 63, 2676-2678.	3.2	26
69	Reactions of Alkyllithium and Grignard Reagents with Benzoquinone:  Evidence for an Electron-Transfer Mechanism. Journal of Organic Chemistry, 1997, 62, 4874-4876.	3.2	32