
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4586156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two-Dimensional Metal–Organic Frameworks with Unique Oriented Layers for Oxygen Reduction Reaction: Tailoring the Activity through Exposed Crystal Facets. CCS Chemistry, 2022, 4, 1633-1642.	7.8	13
2	Metal-hydrogen-pi-bonded organic frameworks. Dalton Transactions, 2022, 51, 1927-1935.	3.3	12
3	Three-dimensional electron diffraction: a powerful structural characterization technique for crystal engineering. CrystEngComm, 2022, 24, 2719-2728.	2.6	5
4	Tunable metal hydroxide–organic frameworks for catalysing oxygen evolution. Nature Materials, 2022, 21, 673-680.	27.5	123
5	Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study. Nature Communications, 2022, 13, 1370.	12.8	60
6	Nanostructured Conductive Metal Organic Frameworks for Sustainable Low Charge Overpotentials in Li–Air Batteries. Small, 2022, 18, e2102902.	10.0	22
7	Fe Singleâ€∎tom Sites in Twoâ€Dimensional Nitrogenâ€doped Porous Carbon for Electrocatalytic Oxygen Reduction. ChemCatChem, 2022, 14, .	3.7	3
8	How to get maximum structure information from anisotropic displacement parameters obtained by three-dimensional electron diffraction: an experimental study on metal–organic frameworks. IUCrJ, 2022, 9, 480-491.	2.2	2
9	Can 3D electron diffraction provide accurate atomic structures of metal–organic frameworks?. Faraday Discussions, 2021, 225, 118-132.	3.2	34
10	3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic frameworks. Coordination Chemistry Reviews, 2021, 427, 213583.	18.8	86
11	Inherent mass transfer engineering of a Co, N co-doped carbon material towards oxygen reduction reaction. Journal of Energy Chemistry, 2021, 58, 391-396.	12.9	12
12	Three-dimensional electron diffraction for porous crystalline materials: structural determination and beyond. Chemical Science, 2021, 12, 1206-1219.	7.4	44
13	2D Copper Tetrahydroxyquinone Conductive Metal–Organic Framework for Selective CO ₂ Electrocatalysis at Low Overpotentials. Advanced Materials, 2021, 33, e2004393.	21.0	120
14	Three-Dimensional Electron Diffraction for Structural Analysis of Beam-Sensitive Metal-Organic Frameworks. Crystals, 2021, 11, 263.	2.2	8
15	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 11391-11397.	13.8	29
16	A Tunable Multivariate Metal–Organic Framework as a Platform for Designing Photocatalysts. Journal of the American Chemical Society, 2021, 143, 6333-6338.	13.7	69
17	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie, 2021, 133, 11492-11498.	2.0	6
18	Low Dose Structural Analysis of Fragile Materials by Three-Dimensional Electron Diffraction. Microscopy and Microanalysis, 2021, 27, 3152-3153.	0.4	0

#	Article	IF	CITATIONS
19	Ligand-Directed Conformational Control over Porphyrinic Zirconium Metal–Organic Frameworks for Size-Selective Catalysis. Journal of the American Chemical Society, 2021, 143, 12129-12137.	13.7	73
20	On the completeness of three-dimensional electron diffraction data for structural analysis of metal–organic frameworks. Faraday Discussions, 2021, 231, 66-80.	3.2	14
21	Probing Molecular Motions in Metal–Organic Frameworks by Three-Dimensional Electron Diffraction. Journal of the American Chemical Society, 2021, 143, 17947-17952.	13.7	12
22	Rapid desolvation-triggered domino lattice rearrangement in a metal–organic framework. Nature Chemistry, 2020, 12, 90-97.	13.6	93
23	Kinetically Controlled Reticular Assembly of a Chemically Stable Mesoporous Ni(II)-Pyrazolate Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 13491-13499.	13.7	97
24	High Thermopower in a Zn-Based 3D Semiconductive Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 20531-20535.	13.7	40
25	Synthesis and Crystal-Phase Engineering of Mesoporous Palladium–Boron Alloy Nanoparticles. ACS Central Science, 2020, 6, 2347-2353.	11.3	36
26	A Porphyrinic Zirconium Metal–Organic Framework for Oxygen Reduction Reaction: Tailoring the Spacing between Active-Sites through Chain-Based Inorganic Building Units. Journal of the American Chemical Society, 2020, 142, 15386-15395.	13.7	139
27	3D-3D topotactic transformation in aluminophosphate molecular sieves and its implication in new zeolite structure generation. Nature Communications, 2020, 11, 3762.	12.8	14
28	Valence-Dependent Electrical Conductivity in a 3D Tetrahydroxyquinone-Based Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 21243-21248.	13.7	39
29	Phase dependent encapsulation and release profile of ZIF-based biocomposites. Chemical Science, 2020, 11, 3397-3404.	7.4	70
30	Continuous Variation of Lattice Dimensions and Pore Sizes in Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 4732-4738.	13.7	65
31	Electrocatalytic Hydrogen Evolution from a Cobaloxime-Based Metal–Organic Framework Thin Film. Journal of the American Chemical Society, 2019, 141, 15942-15950.	13.7	135
32	Magneto-structural correlations of novel kagomé-type metal organic frameworks. Journal of Materials Chemistry C, 2019, 7, 6692-6697.	5.5	10
33	A two-dimensional multi-shelled metal–organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chemical Communications, 2019, 55, 14805-14808.	4.1	39
34	Novel insight into the epitaxial growth mechanism of six-fold symmetrical β-Co(OH)2/Co(OH)F hierarchical hexagrams and their water oxidation activity. Electrochimica Acta, 2018, 271, 526-536.	5.2	42
35	Hollow titania spheres loaded with noble metal nanoparticles for photocatalytic water oxidation. Microporous and Mesoporous Materials, 2018, 264, 147-150.	4.4	18
36	Robust and conductive two-dimensional metalâ^'organic frameworks with exceptionally high volumetric and areal capacitance. Nature Energy, 2018, 3, 30-36.	39.5	786

#	Article	IF	CITATIONS
37	[Ti ₈ Zr ₂ O ₁₂ (COO) ₁₆] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Central Science, 2018, 4, 105-111.	11.3	204
38	A Porous Cobalt Tetraphosphonate Metal–Organic Framework: Accurate Structure and Guest Molecule Location Determined by Continuousâ€Rotation Electron Diffraction. Chemistry - A European Journal, 2018, 24, 17429-17433.	3.3	73
39	Synthetic Routes for a 2D Semiconductive Copper Hexahydroxybenzene Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 14533-14537.	13.7	201
40	Coordination Modulation Method To Prepare New Metal–Organic Framework-Based CO-Releasing Materials. ACS Applied Materials & Interfaces, 2018, 10, 31158-31167.	8.0	31
41	Stabilization of Hexaaminobenzene in a 2D Conductive Metal–Organic Framework for High Power Sodium Storage. Journal of the American Chemical Society, 2018, 140, 10315-10323.	13.7	351
42	Quasi-single-crystalline CoO hexagrams with abundant defects for highly efficient electrocatalytic water oxidation. Chemical Science, 2018, 9, 6961-6968.	7.4	56
43	Probing the Evolution of Palladium Species in Pd@MOF Catalysts during the Heck Coupling Reaction: An Operando X-ray Absorption Spectroscopy Study. Journal of the American Chemical Society, 2018, 140, 8206-8217.	13.7	70
44	A Fast and Scalable Approach for Synthesis of Hierarchical Porous Zeolitic Imidazolate Frameworks and One-Pot Encapsulation of Target Molecules. Inorganic Chemistry, 2017, 56, 9139-9146.	4.0	119
45	Fabrication of Chiral Materials via Selfâ€Assembly and Biomineralization of Peptides. Chemical Record, 2015, 15, 665-674.	5.8	7
46	Optically Active Nanostructured ZnO Films. Angewandte Chemie - International Edition, 2015, 54, 15170-15175.	13.8	82
47	Fabrication of Mesostructured Silica Materials through Co-Structure-Directing Route. Bulletin of the Chemical Society of Japan, 2015, 88, 617-632.	3.2	39
48	Hard-templating of chiral TiO ₂ nanofibres with electron transition-based optical activity. Science and Technology of Advanced Materials, 2015, 16, 054206.	6.1	13
49	Amphiphilic ABC triblock terpolymer templated large-pore mesoporous silicas. Materials Letters, 2015, 141, 176-179.	2.6	5
50	Optically active chiral Ag nanowires. Science China Materials, 2015, 58, 441-446.	6.3	19
51	Silica Biomineralization via the Selfâ€Assembly of Helical Biomolecules. Advanced Materials, 2015, 27, 479-497.	21.0	82
52	Control of Chiral Nanostructures by Selfâ€Assembly of Designed Amphiphilic Peptides and Silica Biomineralization. Chemistry - A European Journal, 2014, 20, 17068-17076.	3.3	15
53	Rigid bolaform surfactant templated mesoporous silicon nanofibers as anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 19855-19860.	10.3	18
54	Design of Amphiphilic Peptide Geometry towards Biomimetic Selfâ€Assembly of Chiral Mesoporous Silica. Chemistry - A European Journal, 2014, 20, 3273-3276.	3.3	9

#	Article	IF	CITATIONS
55	Structural roles of amphiphilic peptide tails on silica biomineralization. Dalton Transactions, 2014, 43, 16169-16172.	3.3	8
56	Controllable synthesis of silica hollow spheres by vesicle templating of silicone surfactants. Journal of Materials Science, 2013, 48, 1890-1898.	3.7	8
57	Mesostructured chitosan–silica hybrid as a biodegradable carrier for a pH-responsive drug delivery system. Dalton Transactions, 2012, 41, 5038.	3.3	34
58	Synthesis of Zeolite/Mesoporous Silica Composite Microspheres by Microemulsion Method. Acta Chimica Sinica, 2012, 70, 2419.	1.4	6
59	Growth of Mesoporous Silica Film with Vertical Channels on Substrate Using Gemini Surfactants. Chemistry of Materials, 2011, 23, 3583-3586.	6.7	41
60	The Effect of Oxygen Concentration on the Reaction of NO _x with Soot Over BaAl ₂ O ₄ . Chemical Engineering and Technology, 2008, 31, 138-142.	1.5	8
61	Characteristics of Oxidation of Diesel Paticulate Matter over a Spinel Type Cu0.95K0.05Fe2O4Catalyst. Chemical Engineering and Technology, 2008, 31, 1433-1437.	1.5	4
62	Combustion and performance of heavy-duty diesel engines fuelled with dimethyl ether. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222, 1691-1703.	1.9	10
63	Properties of BaAl ₂ O ₄ in the Simultaneous Removal of Soot and NO _x . Chemical Engineering and Technology, 2007, 30, 1426-1433.	1.5	9