Louis Lambrechts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/458526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mosquitoâ€bacteria interactions during larval development trigger metabolic changes with carryâ€over effects on adult fitness. Molecular Ecology, 2022, 31, 1444-1460.	3.9	18
2	Mutational analysis of Aedes aegypti Dicer 2 provides insights into the biogenesis of antiviral exogenous small interfering RNAs. PLoS Pathogens, 2022, 18, e1010202.	4.7	6
3	Larval habitat determines the bacterial and fungal microbiota of the mosquito vector <i>Aedes aegypti</i> . FEMS Microbiology Ecology, 2022, 98, .	2.7	17
4	Yearly variations of the genetic structure of Aedes aegypti (Linnaeus) (Diptera: Culicidae) in the Philippines (2017–2019). Infection, Genetics and Evolution, 2022, 102, 105296.	2.3	3
5	Recent African strains of Zika virus display higher transmissibility and fetal pathogenicity than Asian strains. Nature Communications, 2021, 12, 916.	12.8	80
6	Did Zika virus attenuation or increased virulence lead to the emergence of congenital Zika syndrome?. Journal of Travel Medicine, 2021, 28, .	3.0	8
7	Potential role of vector-mediated natural selection in dengue virus genotype/lineage replacements in two epidemiologically contrasted settings. Emerging Microbes and Infections, 2021, 10, 1346-1357.	6.5	10
8	The legacy of ZikaPLAN: a transnational research consortium addressing Zika. Global Health Action, 2021, 14, 2008139.	1.9	5
9	Enhanced Zika virus susceptibility of globally invasive <i>Aedes aegypti</i> populations. Science, 2020, 370, 991-996.	12.6	61
10	Non-retroviral Endogenous Viral Element Limits Cognate Virus Replication in Aedes aegypti Ovaries. Current Biology, 2020, 30, 3495-3506.e6.	3.9	88
11	Experimental adaptation of dengue virus 1 to Aedes albopictus mosquitoes by in vivo selection. Scientific Reports, 2020, 10, 18404.	3.3	10
12	Novel genome sequences of cell-fusing agent virus allow comparison of virus phylogeny with the genetic structure of Aedes aegypti populations. Virus Evolution, 2020, 6, veaa018.	4.9	24
13	Risk of arbovirus emergence via bridge vectors: case study of the sylvatic mosquito Aedes malayensis in the Nakai district, Laos. Scientific Reports, 2020, 10, 7750.	3.3	7
14	Exome-wide association study reveals largely distinct gene sets underlying specific resistance to dengue virus types 1 and 3 in Aedes aegypti. PLoS Genetics, 2020, 16, e1008794.	3.5	13
15	Tudor-SN Promotes Early Replication of Dengue Virus in the Aedes aegypti Midgut. IScience, 2020, 23, 100870.	4.1	12
16	A satellite repeat-derived piRNA controls embryonic development of Aedes. Nature, 2020, 580, 274-277.	27.8	90
17	Taking Insect Immunity to the Single-Cell Level. Trends in Immunology, 2020, 41, 190-199.	6.8	10
18	Insect decline: immediate action is needed. Comptes Rendus - Biologies, 2020, 343, 267-293.	0.2	10

2

#	Article	IF	CITATIONS
19	BiteOscope, an open platform to study mosquito biting behavior. ELife, 2020, 9, .	6.0	31
20	Title is missing!. , 2020, 16, e1008794.		0
21	Title is missing!. , 2020, 16, e1008794.		0
22	Title is missing!. , 2020, 16, e1008794.		0
23	Title is missing!. , 2020, 16, e1008794.		Ο
24	Cell-Fusing Agent Virus Reduces Arbovirus Dissemination in Aedes aegypti Mosquitoes <i>In Vivo</i> . Journal of Virology, 2019, 93, .	3.4	86
25	ZikaPLAN: addressing the knowledge gaps and working towards a research preparedness network in the Americas. Global Health Action, 2019, 12, 1666566.	1.9	13
26	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. PLoS Neglected Tropical Diseases, 2019, 13, e0007783.	3.0	11
27	Manipulating Mosquito Tolerance for Arbovirus Control. Cell Host and Microbe, 2019, 26, 309-313.	11.0	30
28	Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 2019, 4, 854-863.	13.3	699
29	Acceptability of Aedes aegypti blood feeding on dengue virus-infected human volunteers for vector competence studies in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2019, 13, e0007090.	3.0	6
30	Feasibility of feeding Aedes aegypti mosquitoes on dengue virus-infected human volunteers for vector competence studies in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2019, 13, e0007116.	3.0	10
31	RNA Structure Duplication in the Dengue Virus 3′ UTR: Redundancy or Host Specificity?. MBio, 2019, 10, .	4.1	51
32	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. , 2019, 13, e0007783.		0
33	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. , 2019, 13, e0007783.		Ο
34	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. , 2019, 13, e0007783.		0
35	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. , 2019, 13, e0007783.		0
36	Dicer-2-Dependent Generation of Viral DNA from Defective Genomes of RNA Viruses Modulates Antiviral Immunity in Insects. Cell Host and Microbe, 2018, 23, 353-365.e8.	11.0	124

#	Article	IF	CITATIONS
37	A Survey of Virus Recombination Uncovers Canonical Features of Artificial Chimeras Generated During Deep Sequencing Library Preparation. G3: Genes, Genomes, Genetics, 2018, 8, 1129-1138.	1.8	21
38	Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature, 2018, 563, 501-507.	27.8	426
39	Larval Exposure to the Bacterial Insecticide Bti Enhances Dengue Virus Susceptibility of Adult Aedes aegypti Mosquitoes. Insects, 2018, 9, 193.	2.2	24
40	Immune priming and clearance of orally acquired RNA viruses in Drosophila. Nature Microbiology, 2018, 3, 1394-1403.	13.3	59
41	Development and validation of four one-step real-time RT-LAMP assays for specific detection of each dengue virus serotype. PLoS Neglected Tropical Diseases, 2018, 12, e0006381.	3.0	53
42	Epidemiological significance of dengue virus genetic variation in mosquito infection dynamics. PLoS Pathogens, 2018, 14, e1007187.	4.7	41
43	Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome. Parasites and Vectors, 2018, 11, 207.	2.5	63
44	Aedes Mosquitoes and Aedes-Borne Arboviruses in Africa: Current and Future Threats. International Journal of Environmental Research and Public Health, 2018, 15, 220.	2.6	153
45	Contributions from the silent majority dominate dengue virus transmission. PLoS Pathogens, 2018, 14, e1006965.	4.7	118
46	Discovery of flavivirus-derived endogenous viral elements in <i>Anopheles</i> mosquito genomes supports the existence of <i>Anopheles</i> -associated insect-specific flaviviruses. Virus Evolution, 2017, 3, vew035.	4.9	43
47	Dengue virus replicates and accumulates in Aedes aegypti salivary glands. Virology, 2017, 507, 75-81.	2.4	44
48	Uncovering the Repertoire of Endogenous Flaviviral Elements in Aedes Mosquito Genomes. Journal of Virology, 2017, 91, .	3.4	81
49	Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Science Advances, 2017, 3, e1700585.	10.3	172
50	Full-genome dengue virus sequencing in mosquito saliva shows lack of convergent positive selection during transmission by Aedes aegypti. Virus Evolution, 2017, 3, vex031.	4.9	25
51	ZikaPLAN: Zika Preparedness Latin American Network. Global Health Action, 2017, 10, 1398485.	1.9	25
52	Extensive Genetic Differentiation between Homomorphic Sex Chromosomes in the Mosquito Vector, Aedes aegypti. Genome Biology and Evolution, 2017, 9, 2322-2335.	2.5	45
53	Individual co-variation between viral RNA load and gene expression reveals novel host factors during early dengue virus infection of the Aedes aegypti midgut. PLoS Neglected Tropical Diseases, 2017, 11, e0006152.	3.0	41
54	Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nature Communications, 2016, 7, 12410.	12.8	199

#	Article	IF	CITATIONS
55	Targeted full-genome amplification and sequencing of dengue virus types 1–4 from South America. Journal of Virological Methods, 2016, 235, 158-167.	2.1	28
56	No evidence for local adaptation of dengue viruses to mosquito vector populations in <scp>T</scp> hailand. Evolutionary Applications, 2016, 9, 608-618.	3.1	11
57	Evolutionary dynamics of dengue virus populations within the mosquito vector. Current Opinion in Virology, 2016, 21, 47-53.	5.4	12
58	Excretion of dengue virus RNA by Aedes aegypti allows non-destructive monitoring of viral dissemination in individual mosquitoes. Scientific Reports, 2016, 6, 24885.	3.3	67
59	Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes. PLoS Genetics, 2016, 12, e1006111.	3.5	117
60	Determinants of Arbovirus Vertical Transmission in Mosquitoes. PLoS Pathogens, 2016, 12, e1005548.	4.7	98
61	Improving Dengue Virus Capture Rates in Humans and Vectors in Kamphaeng Phet Province, Thailand, Using an Enhanced Spatiotemporal Surveillance Strategy. American Journal of Tropical Medicine and Hygiene, 2015, 93, 24-32.	1.4	26
62	Assessing the epidemiological effect of wolbachia for dengue control. Lancet Infectious Diseases, The, 2015, 15, 862-866.	9.1	73
63	Asymptomatic humans transmit dengue virus to mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14688-14693.	7.1	355
64	Predicting Wolbachia potential to knock down dengue virus transmission. Annals of Translational Medicine, 2015, 3, 288.	1.7	2
65	Differential Susceptibility of Two Field Aedes aegypti Populations to a Low Infectious Dose of Dengue Virus. PLoS ONE, 2014, 9, e92971.	2.5	26
66	Vertical transmission of arboviruses in mosquitoes: A historical perspective. Infection, Genetics and Evolution, 2014, 28, 681-690.	2.3	68
67	Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141078.	2.6	145
68	Reduction of Aedes aegypti Vector Competence for Dengue Virus under Large Temperature Fluctuations. American Journal of Tropical Medicine and Hygiene, 2013, 88, 689-697.	1.4	108
69	Large Diurnal Temperature Fluctuations Negatively Influence <i>Aedes aegypti</i> (Diptera: Culicidae) Life-History Traits. Journal of Medical Entomology, 2013, 50, 43-51.	1.8	123
70	Fluctuations at a Low Mean Temperature Accelerate Dengue Virus Transmission by Aedes aegypti. PLoS Neglected Tropical Diseases, 2013, 7, e2190.	3.0	183
71	Genetic Mapping of Specific Interactions between Aedes aegypti Mosquitoes and Dengue Viruses. PLoS Genetics, 2013, 9, e1003621.	3.5	105
72	Specificity of resistance to dengue virus isolates is associated with genotypes of the mosquito antiviral gene <i>Dicer-2</i> . Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122437.	2.6	66

#	Article	IF	CITATIONS
73	Effects of Fluctuating Daily Temperatures at Critical Thermal Extremes on Aedes aegypti Life-History Traits. PLoS ONE, 2013, 8, e58824.	2.5	157
74	Dengue-1 Virus Clade Replacement in Thailand Associated with Enhanced Mosquito Transmission. Journal of Virology, 2012, 86, 1853-1861.	3.4	104
75	Vector biology prospects in dengue research. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 1080-1082.	1.6	25
76	Quantitative genetics of Aedes aegypti vector competence for dengue viruses: towards a new paradigm?. Trends in Parasitology, 2011, 27, 111-114.	3.3	63
77	Impact of daily temperature fluctuations on dengue virus transmission by <i>Aedes aegypti</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7460-7465.	7.1	587
78	Dissecting the Genetic Architecture of Host–Pathogen Specificity. PLoS Pathogens, 2010, 6, e1001019.	4.7	65
79	Consequences of the Expanding Global Distribution of Aedes albopictus for Dengue Virus Transmission. PLoS Neglected Tropical Diseases, 2010, 4, e646.	3.0	566
80	Polymorphisms in Anopheles gambiae Immune Genes Associated with Natural Resistance to Plasmodium falciparum. PLoS Pathogens, 2010, 6, e1001112.	4.7	92
81	Mode of transmission and the evolution of arbovirus virulence in mosquito vectors. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1369-1378.	2.6	108
82	Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. BMC Evolutionary Biology, 2009, 9, 160.	3.2	184
83	Shifting priorities in vector biology to improve control of vectorâ€borne disease. Tropical Medicine and International Health, 2009, 14, 1505-1514.	2.3	32
84	No maternal effects after stimulation of the melanization response in the yellow fever mosquito <i>Aedes aegypti</i> . Oikos, 2008, 117, 1269-1279.	2.7	20
85	Can transgenic mosquitoes afford the fitness cost?. Trends in Parasitology, 2008, 24, 4-7.	3.3	36
86	A major genetic locus controlling natural Plasmodium falciparum infection is shared by East and West African Anopheles gambiae. Malaria Journal, 2007, 6, 87.	2.3	23
87	EFFECT OF INFECTION BY PLASMODIUM FALCIPARUM ON THE MELANIZATION IMMUNE RESPONSE OF ANOPHELES GAMBIAE. American Journal of Tropical Medicine and Hygiene, 2007, 76, 475-480.	1.4	22
88	Anopheles gambiae immune responses to Sephadex beads: Involvement of anti-Plasmodium factors in regulating melanization. Insect Biochemistry and Molecular Biology, 2006, 36, 769-778.	2.7	31
89	Coevolutionary interactions between host and parasite genotypes. Trends in Parasitology, 2006, 22, 12-16.	3.3	195
90	Environmental influence on the genetic basis of mosquito resistance to malaria parasites. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1501-1506.	2.6	111

#	Article	IF	CITATIONS
91	Increased melanizing activity in Anopheles gambiae does not affect development of Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16858-16863.	7.1	93
92	Host genotype by parasite genotype interactions underlying the resistance of anopheline mosquitoes to Plasmodium falciparum. Malaria Journal, 2005, 4, 3.	2.3	149
93	GENETIC CORRELATION BETWEEN MELANIZATION AND ANTIBACTERIAL IMMUNE RESPONSES IN A NATURAL POPULATION OF THE MALARIA VECTOR ANOPHELES GAMBIAE. Evolution; International Journal of Organic Evolution, 2004, 58, 2377-2381.	2.3	32