
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4584832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of allelochemicals, soil enzyme activity and environmental factors from <i>Stellera chamaejasme</i> L. on rhizosphere bacterial communities in the northern Tibetan Plateau. Archives of Agronomy and Soil Science, 2022, 68, 547-560.	2.6	5
2	Highâ€Efficiency Nonâ€Fullerene Acceptors Developed by Machine Learning and Quantum Chemistry. Advanced Science, 2022, 9, e2104742.	11.2	28
3	Characterization of Rhizosphere and Endophytic Microbial Communities Associated with Stipa purpurea and Their Correlation with Soil Environmental Factors. Plants, 2022, 11, 363.	3.5	10
4	Effects of Allelochemicals, Soil Enzyme Activities, and Environmental Factors on Rhizosphere Soil Microbial Community of Stellera chamaejasme L. along a Growth-Coverage Gradient. Microorganisms, 2022, 10, 158.	3.6	12
5	Role of Ions in Hydrogels with an Ionic Seebeck Coefficient of 52.9 mV K ^{–1} . Journal of Physical Chemistry Letters, 2022, 13, 4621-4627.	4.6	41
6	Molecular identification, diversity and functional characterization of fungal communities isolated from Stipa purpurea. South African Journal of Botany, 2022, 149, 117-123.	2.5	1
7	Privacy-Preserving Lightweight Data Monitoring in Internet of Things Environments. Wireless Personal Communications, 2021, 116, 1765-1783.	2.7	3
8	15.3% Efficiency Allâ€&mallâ€Molecule Organic Solar Cells Achieved by a Locally Asymmetric F, Cl Disubstitution Strategy. Advanced Science, 2021, 8, 2004262.	11.2	76
9	Anion Exchange on Surface Induces Drastic Fluorescence Response in Cu(II) Coordination Polymer Crystals. Crystal Growth and Design, 2021, 21, 1905-1911.	3.0	8
10	Artificial Intelligence Designer for Highly-Efficient Organic Photovoltaic Materials. Journal of Physical Chemistry Letters, 2021, 12, 8847-8854.	4.6	15
11	Natural wax from non-medicinal aerial part of Codonopsis pilosula as a biolubricant. Journal of Cleaner Production, 2020, 242, 118403.	9.3	13
12	Anti-aging effects on Caenorhabditis elegans of a polysaccharide, O-acetyl glucomannan, from roots of Lilium davidii var. unicolor Cotton. International Journal of Biological Macromolecules, 2020, 155, 846-852.	7.5	49
13	Diversity and Functions of Endophytic Fungi Associated with Roots and Leaves of <i>Stipa purpurea</i> in an Alpine Steppe at Qinghai-Tibet Plateau. Journal of Microbiology and Biotechnology, 2020, 30, 1027-1036.	2.1	5
14	The accumulation of reactive oxygen species in root tips caused by autotoxic allelochemicals – A significant factor for replant problem of Angelica sinensis (Oliv.) Diels. Industrial Crops and Products, 2019, 138, 111432.	5.2	28
15	Purification, characterization and antioxidant activities of a polysaccharide from the roots of Lilium davidii var. unicolor Cotton. International Journal of Biological Macromolecules, 2019, 135, 1208-1216.	7.5	43
16	Structural characterization, antioxidant and antibacterial activities of two heteropolysaccharides purified from the bulbs of Lilium davidii var. unicolor Cotton. International Journal of Biological Macromolecules, 2019, 133, 306-315.	7.5	52
17	Self-assembly of intramolecularly hydrogen-bonded amphiphilic diboronic acid for saccharide recognition. Journal of Colloid and Interface Science, 2019, 537, 325-332.	9.4	3
18	Privacy-Preserving Cloud-Based Road Condition Monitoring With Source Authentication in VANETs. IEEE Transactions on Information Forensics and Security, 2019, 14, 1779-1790.	6.9	94

#	Article	IF	CITATIONS
19	Characterization of allelochemicals from the rhizosphere soil of Pinellia ternate (Thnub.) and their inhibition activity on protective enzymes. Applied Soil Ecology, 2018, 125, 301-306.	4.3	14
20	Bacterial community structure associated with the rhizosphere soils and roots of Stellera chamaejasme L. along a Tibetan elevation gradient. Annals of Microbiology, 2018, 68, 273-286.	2.6	19
21	Highly sensitive and visual detection of guanosine 3′-diphosphate-5′-di(tri)phosphate (ppGpp) in bacteria based on copper ions-mediated 4-mercaptobenzoic acid modified gold nanoparticles. Analytica Chimica Acta, 2018, 1023, 89-95.	5.4	18
22	Effects of artemisinin on root gravitropic response and root system development in Arabidopsis thaliana. Plant Growth Regulation, 2018, 85, 211-220.	3.4	14
23	Main Allelochemicals from the Rhizosphere Soil of Saussurea lappa (Decne.) Sch. Bip. and Their Effects on Plants' Antioxidase Systems. Molecules, 2018, 23, 2506.	3.8	19
24	Bio-guided isolation of plant growth regulators from allelopathic plant-Codonopsis pilosula: phyto-selective activities and mechanisms. RSC Advances, 2018, 8, 13649-13655.	3.6	5
25	Secure joint Bitcoin trading with partially blind fuzzy signatures. Soft Computing, 2017, 21, 3123-3134.	3.6	6
26	Antifungal activity of umbelliferone derivatives: Synthesis and structure-activity relationships. Microbial Pathogenesis, 2017, 104, 110-115.	2.9	23
27	Online/Offline Provable Data Possession. IEEE Transactions on Information Forensics and Security, 2017, 12, 1182-1194.	6.9	37
28	Codonopilate A, a Triterpenyl Ester as Main Autotoxin in Cultivated Soil of <i>Codonopsis pilosula</i> (Franch.) Nannf. Journal of Agricultural and Food Chemistry, 2017, 65, 2032-2038.	5.2	26
29	Identity-Based Data Outsourcing With Comprehensive Auditing in Clouds. IEEE Transactions on Information Forensics and Security, 2017, 12, 940-952.	6.9	92
30	Allelochemicals from rhizosphere soils of Glycyrrhiza uralensis Fisch: Discovery of the autotoxic compounds of a traditional herbal medicine. Industrial Crops and Products, 2017, 97, 302-307.	5.2	31
31	Cycloartane-type triterpenoids from Astragalus hoantchy French Natural Product Research, 2017, 31, 314-319.	1.8	6
32	Characterization of rhizosphere and endophytic fungal communities from roots of <i>Stipa purpurea</i> in alpine steppe around Qinghai Lake. Canadian Journal of Microbiology, 2016, 62, 643-656.	1.7	9
33	Synthesis of N-substituted phthalimides and their antifungal activity against Alternaria solani and Botrytis cinerea. Microbial Pathogenesis, 2016, 95, 186-192.	2.9	30
34	Allelochemicals from the Rhizosphere Soil of Cultivated <i>Astragalus hoantchy</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 3345-3352.	5.2	22
35	Phytotoxicity mechanisms of two coumarin allelochemicals from Stellera chamaejasme in lettuce seedlings. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	31
36	Flavoniods from aerial parts of Astragalus hoantchy. Fìtoterapìâ, 2016, 114, 34-39.	2.2	9

#	Article	IF	CITATIONS
37	Total Synthesis of Trioxacarcins DC-45-A1, A, D, C, and C7″- <i>epi</i> -C and Full Structural Assignment of Trioxacarcin C. Journal of the American Chemical Society, 2016, 138, 3118-3124.	13.7	39
38	Isolation and identification of chemical constituents from the bacterium <i>Bacillus</i> sp. and their nematicidal activities. Journal of Basic Microbiology, 2015, 55, 1239-1244.	3.3	13
39	Total Synthesis of Trioxacarcin DCâ€45â€A2. Angewandte Chemie, 2015, 127, 3117-3121.	2.0	6
40	Mechanism of artemisinin phytotoxicity action: Induction of reactive oxygen species and cell death in lettuce seedlings. Plant Physiology and Biochemistry, 2015, 88, 53-59.	5.8	46
41	Flexible attribute-based encryption applicable to secure e-healthcare records. International Journal of Information Security, 2015, 14, 499-511.	3.4	37
42	Total Synthesis of Trioxacarcin DCâ€45â€A2. Angewandte Chemie - International Edition, 2015, 54, 3074-3078.	13.8	23
43	Potential allelochemicals in root zone soils of Stellera chamaejasme L. and variations at different geographical growing sites. Plant Growth Regulation, 2015, 77, 335-342.	3.4	27
44	Phytotoxicity of umbelliferone and its analogs: Structure–activity relationships and action mechanisms. Plant Physiology and Biochemistry, 2015, 97, 272-277.	5.8	48
45	Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach. Antonie Van Leeuwenhoek, 2015, 108, 835-850.	1.7	18
46	Isolation, Identification, and Autotoxicity Effect of Allelochemicals from Rhizosphere Soils of Flue-Cured Tobacco. Journal of Agricultural and Food Chemistry, 2015, 63, 8975-8980.	5.2	50
47	TPP: Traceable Privacy-Preserving Communication and Precise Reward for Vehicle-to-Grid Networks in Smart Grids. IEEE Transactions on Information Forensics and Security, 2015, 10, 2340-2351.	6.9	66
48	Octahedra-based molecular sieve aluminoborate (PKU-1) as solid acid for heterogeneously catalyzed Strecker reaction. Catalysis Communications, 2015, 58, 174-178.	3.3	15
49	Fabrication of Chromium (III) Oxide (Cr ₂ O ₃) Coating by Electrophoretic Deposition. Journal of the American Ceramic Society, 2014, 97, 3413-3417.	3.8	22
50	Electrophoretic deposition and characterization of nano-Al/Fe2O3 thermites. Materials Letters, 2014, 120, 224-227.	2.6	29
51	An unusual macrocyclization reagent for highly selective one-pot synthesis of strained macrocyclic aromatic hexamers. Chemical Communications, 2014, 50, 3582-3584.	4.1	22
52	Phytotoxic flavonoids from roots of Stellera chamaejasme L. (Thymelaeaceae). Phytochemistry, 2014, 106, 61-68.	2.9	45
53	Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L Systematic and Applied Microbiology, 2014, 37, 376-385.	2.8	108
54	Patterned recognition of amines and ammonium ions by a stimuli-responsive foldamer-based hexameric oligophenol host. Chemical Communications, 2013, 49, 5307.	4.1	25

#	Article	IF	CITATIONS
55	Folding-promoted TBAX-mediated selective demethylation of methoxybenzene-based macrocyclic aromatic pentamers. Organic and Biomolecular Chemistry, 2012, 10, 4164.	2.8	14
56	POCl3-mediated H-bonding-directed one-pot synthesis of macrocyclic pentamers, strained hexamers and highly strained heptamers. Science China Chemistry, 2012, 55, 55-63.	8.2	15
57	Highly selective one-pot synthesis of H-bonded pentagon-shaped circular aromatic pentamers. Chemical Communications, 2011, 47, 5419-5421.	4.1	46
58	Folding-Promoted TBACl-Mediated Chemo- and Regioselective Demethylations of Methoxybenzene-Based Macrocyclic Pentamers. Organic Letters, 2011, 13, 6212-6215.	4.6	24
59	One-Pot Synthesis of Hybrid Macrocyclic Pentamers with Variable Functionalizations around the Periphery. Organic Letters, 2011, 13, 2270-2273.	4.6	36
60	Oneâ€Pot Multimolecular Macrocyclization for the Expedient Synthesis of Macrocyclic Aromatic Pentamers by a Chain Growth Mechanism. Chemistry - an Asian Journal, 2011, 6, 3298-3305.	3.3	22
61	Inside Cover: One-Pot Multimolecular Macrocyclization for the Expedient Synthesis of Macrocyclic Aromatic Pentamers by a Chain Growth Mechanism (Chem. Asian J. 12/2011). Chemistry - an Asian Journal, 2011, 6, 3162-3162.	3.3	0
62	Crystallographic Realization of the Mathematically Predicted Densest Allâ€Pentagon Packing Lattice by <i>C</i> ₅ ‧ymmetric "Sticky―Fluoropentamers. Angewandte Chemie - International Edition, 2011, 50, 10612-10615.	13.8	61
63	Synthesis, Structural Investigations, Hydrogenâ^'Deuterium Exchange Studies, and Molecular Modeling of Conformationally Stablilized Aromatic Oligoamides. Journal of the American Chemical Society, 2010, 132, 5869-5879.	13.7	79
64	Asymmetric Conjugate Addition of Nitromethane to Enones Catalyzed by Chiral <i>N</i> , <i>N′</i> â€Ðioxide–Scandium(III) Complexes. Chemistry - A European Journal, 2010, 16, 7696-769	9. ^{3.3}	39
65	Highly Enantioselective Insertion of Carbenoids into NH Bonds Catalyzed by Copper(I) Complexes of Binol Derivatives. Angewandte Chemie - International Edition, 2010, 49, 4763-4766.	13.8	110
66	<i>N</i> , <i>N</i> â€2-Dioxideâ^'Cu(OTf) ₂ Complex Catalyzed Highly Enantioselective Amination Reaction of <i>N</i> -Acetyl Enamide. Organic Letters, 2010, 12, 2214-2217.	4.6	45
67	Persistently Folded Circular Aromatic Amide Pentamers Containing Modularly Tunable Cation-Binding Cavities with High Ion Selectivity. Journal of the American Chemical Society, 2010, 132, 9564-9566.	13.7	86
68	Helical Organization in Foldable Aromatic Oligoamides by a Continuous Hydrogen-Bonding Network. Organic Letters, 2009, 11, 1201-1204.	4.6	57
69	Crystallographic Evidence of an Unusual, Pentagon-Shaped Folding Pattern in a Circular Aromatic Pentamer. Organic Letters, 2008, 10, 5127-5130.	4.6	74
70	Highly Enantioselective Henry (Nitroaldol) Reaction of Aldehydes and α-Ketoesters Catalyzed by <i>N</i> , <i>N</i> ,3€~-Dioxide-Copper(I) Complexes. Journal of Organic Chemistry, 2007, 72, 9323-9328.	3.2	148
71	Highly Enantioselective Aza-Henry Reaction of <i>N</i> -Tosyl Imines Catalyzed by <i>N,N</i> â€~-Dioxideâ^'Cu(I) Complexes. Journal of Organic Chemistry, 2007, 72, 10302-10304.	3.2	61
72	Enantioselective Strecker Reaction of Phosphinoyl Ketoimines Catalyzed by in Situ Prepared ChiralN,Nâ€~-Dioxides. Journal of Organic Chemistry, 2007, 72, 204-208.	3.2	92

#	Article	IF	CITATIONS
73	Highly Enantioselective Allylation of α-Ketoesters Catalyzed by <i>N</i> , <i>N</i> â€~-Dioxideâ^'In(III) Complexes. Journal of Organic Chemistry, 2007, 72, 8478-8483.	3.2	63
74	Enantioselective Cyanosilylation of α,α-Dialkoxy Ketones Catalyzed by Proline-Derived in-Situ-PreparedN-Oxide as Bifunctional Organocatalyst. Journal of Organic Chemistry, 2007, 72, 2374-2378.	3.2	86
75	Enantioselective trifluoromethylation of aromatic aldehydes catalyzed by combinatorial catalysts. Tetrahedron, 2007, 63, 6822-6826.	1.9	61
76	Highly Enantio- and Diastereoselective Brassard Type Hetero-Dielsâ^'Alder Approach to 5-Methyl-Containing α,β-Unsaturated δ-Lactones. Journal of Organic Chemistry, 2006, 71, 4141-4146.	3.2	58
77	Musellactone, A New Lactone FromMusella Lasiocarpa. Journal of the Chinese Chemical Society, 2006, 53, 475-478.	1.4	3
78	Catalytic Asymmetric Cyanosilylation of Ketones by a Chiral Amino Acid Salt ChemInform, 2006, 37, no.	0.0	0
79	Enantioselective Cyanosilylation of Ketones Catalyzed by Double-Activation Catalysts with N-Oxides ChemInform, 2005, 36, no.	0.0	0
80	Highly Enantioselective Cyanosilylation of Aldehydes Catalyzed by Novel ?-Amino Alcohol?Titanium Complexes ChemInform, 2005, 36, no.	0.0	2
81	Asymmetric Cyanosilylation of Aldehydes Catalyzed by Novel OrganoÂcatalysts. Synlett, 2005, 2005, 2445-2448.	1.8	6
82	Catalytic Asymmetric Cyanosilylation of Ketones by a Chiral Amino Acid Salt. Journal of the American Chemical Society, 2005, 127, 12224-12225.	13.7	165
83	Enantioselective Cyanosilylation of Ketones by a Catalytic Double-Activation Method with an Aluminium Complex and an N-Oxide. Chemistry - A European Journal, 2004, 10, 4790-4797.	3.3	99
84	Enantioselective cyanosilylation of ketones catalyzed by double-activation catalysts with N-oxides. Tetrahedron, 2004, 60, 10449-10460.	1.9	42
85	Highly Enantioselective Cyanosilylation of Aldehydes Catalyzed by Novel β-Amino Alcoholâ^'Titanium Complexes. Journal of Organic Chemistry, 2004, 69, 7910-7913.	3.2	95
86	Enantioselective Cyanosilylation of Ketones by a Catalytic Double-Activation Method Employing Chiral Lewis Acid and Achiral N-Oxide Catalysts ChemInform, 2003, 34, no.	0.0	0
87	Enantioselective Cyanosilylation of Ketones by a Catalytic Double-Activation Method Employing Chiral Lewis Acid and AchiralN-Oxide Catalysts. Organic Letters, 2003, 5, 949-952.	4.6	110