Emanuele Azzoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4584592/publications.pdf

Version: 2024-02-01

27 papers 2,430 citations

687363 13 h-index 752698 20 g-index

28 all docs 28 docs citations

28 times ranked

4952 citing authors

#	Article	IF	CITATIONS
1	Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 2015, 518, 547-551.	27.8	1,724
2	Lymphomyeloid Contribution of an Immune-Restricted Progenitor Emerging Prior to Definitive Hematopoietic Stem Cells. Cell Stem Cell, 2013, 13, 535-548.	11.1	225
3	Nitric Oxide Sustains Long-Term Skeletal Muscle Regeneration by Regulating Fate of Satellite Cells Via Signaling Pathways Requiring Vangl2 and Cyclic GMP. Stem Cells, 2012, 30, 197-209.	3.2	91
4	A short history of hemogenic endothelium. Blood Cells, Molecules, and Diseases, 2013, 51, 206-212.	1.4	62
5	Initial seeding of the embryonic thymus by immune-restricted lympho-myeloid progenitors. Nature Immunology, 2016, 17, 1424-1435.	14.5	49
6	Hemogenic endothelium generates mesoangioblasts that contribute to several mesodermal lineages <i>in vivo</i> . Development (Cambridge), 2014, 141, 1821-1834.	2.5	42
7	A dual acting compound releasing nitric oxide (NO) and ibuprofen, NCX 320, shows significant therapeutic effects in a mouse model of muscular dystrophy. Pharmacological Research, 2011, 64, 210-217.	7.1	36
8	Coâ€administration of ibuprofen and nitric oxide is an effective experimental therapy for muscular dystrophy, with immediate applicability to humans. British Journal of Pharmacology, 2010, 160, 1550-1560.	5.4	35
9	Kit ligand has a critical role in mouse yolk sac and aorta–gonad–mesonephros hematopoiesis. EMBO Reports, 2018, 19, .	4.5	35
10	Hematopoietic Reprogramming InÂVitro Informs InÂVivo Identification of Hemogenic Precursors to Definitive Hematopoietic Stem Cells. Developmental Cell, 2016, 36, 525-539.	7.0	34
11	Tissue-resident macrophages originate from yolk sac-derived erythro-myeloid progenitors. Experimental Hematology, 2015, 43, S64.	0.4	18
12	Cell-extrinsic hematopoietic impact of Ezh2 inactivation in fetal liver endothelial cells. Blood, 2018, 131, 2223-2234.	1.4	17
13	The onset of circulation triggers a metabolic switch required for endothelial to hematopoietic transition. Cell Reports, 2021, 37, 110103.	6.4	17
14	Prenatal Origin of Pediatric Leukemia: Lessons From Hematopoietic Development. Frontiers in Cell and Developmental Biology, 2020, 8, 618164.	3.7	14
15	Ezh2 is essential for the generation of functional yolk sac derived erythro-myeloid progenitors. Nature Communications, 2021, 12, 7019.	12.8	8
16	KIT is dispensable for physiological organ vascularisation in the embryo. Angiogenesis, 2022, 25, 343-353.	7.2	8
17	One Size Does Not Fit All: Heterogeneity in Developmental Hematopoiesis. Cells, 2022, 11, 1061.	4.1	7
18	Nitric Oxide Donor Molsidomine Positively Modulates Myogenic Differentiation of Embryonic Endothelial Progenitors. PLoS ONE, 2016, 11, e0164893.	2.5	5

#	Article	IF	CITATIONS
19	Editorial: Fetal/Embryonic Hematopoietic Progenitors and Their Impact on Adult Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 732649.	3.7	2
20	Definitive EMP and Pre-HSC Emerge in Myb-Null Murine Embryos and Retain Macrophage Potential. Blood, 2018, 132, 2556-2556.	1.4	1
21	Hemogenic endothelium generates mesoangioblasts that contribute to several mesodermal lineages in vivo. Experimental Hematology, 2013, 41, S24.	0.4	0
22	Direct conversion from mouse fibroblasts informs the identification of hemogenic precursor cells in vivo. Experimental Hematology, 2014, 42, S55.	0.4	0
23	Exploring the role of kit ligand at the onset of hematopoiesis. Experimental Hematology, 2015, 43, S51.	0.4	0
24	Embryonic hematopoietic progenitors depend on kit ligand for in vivo expansion and differentiation. Experimental Hematology, 2016, 44, S43.	0.4	0
25	Definitive erythro-myeloid progenitors (EMP) with macrophage-restricted lineage potential emerge in Myb-null murine embryos. Experimental Hematology, 2016, 44, S93.	0.4	0
26	Embryonic thymopoiesis is initiated by an immune-restricted lympho-myeloid progenitor independently of notch signaling. Experimental Hematology, 2016, 44, S65.	0.4	0
27	Pathways regulating the endothelial-to-hematopoietic transition. Experimental Hematology, 2016, 44, S29.	0.4	О