Jan J G M Verschuuren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4584400/publications.pdf

Version: 2024-02-01

IAN I.C. M. VERSCHLILDEN

#	Article	IF	CITATIONS
1	Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurology, The, 2015, 14, 1023-1036.	10.2	778
2	International consensus guidance for management of myasthenia gravis. Neurology, 2016, 87, 419-425.	1.1	736
3	Local Dystrophin Restoration with Antisense Oligonucleotide PRO051. New England Journal of Medicine, 2007, 357, 2677-2686.	27.0	735
4	Randomized Trial of Thymectomy in Myasthenia Gravis. New England Journal of Medicine, 2016, 375, 511-522.	27.0	695
5	Systemic Administration of PRO051 in Duchenne's Muscular Dystrophy. New England Journal of Medicine, 2011, 364, 1513-1522.	27.0	642
6	The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations. Human Mutation, 2015, 36, 395-402.	2.5	507
7	Screening for tumours in paraneoplastic syndromes: report of an EFNS Task Force. European Journal of Neurology, 2011, 18, 19.	3.3	489
8	Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Human Mutation, 2009, 30, 293-299.	2.5	485
9	Myasthenia gravis. Nature Reviews Disease Primers, 2019, 5, 30.	30.5	421
10	Guidelines for treatment of autoimmune neuromuscular transmission disorders. European Journal of Neurology, 2010, 17, 893-902.	3.3	412
11	Lambert–Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurology, The, 2011, 10, 1098-1107.	10.2	372
12	Long-lasting treatment effect of rituximab in MuSK myasthenia. Neurology, 2012, 78, 189-193.	1.1	354
13	Anti-Hu antibodies in patients with small-cell lung cancer: association with complete response to therapy and improved survival Journal of Clinical Oncology, 1997, 15, 2866-2872.	1.6	351
14	Population-based incidence and prevalence of facioscapulohumeral dystrophy. Neurology, 2014, 83, 1056-1059.	1.1	278
15	International Consensus Guidance for Management of Myasthenia Gravis. Neurology, 2021, 96, 114-122.	1.1	272
16	MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20783-20788.	7.1	234
17	SOX1 antibodies are markers of paraneoplastic Lambert–Eaton myasthenic syndrome. Neurology, 2008, 70, 924-928.	1.1	220
18	Clinical Dutch-English Lambert-Eaton Myasthenic Syndrome (LEMS) Tumor Association Prediction Score Accurately Predicts Small-Cell Lung Cancer in the LEMS. Journal of Clinical Oncology, 2011, 29, 902-908.	1.6	210

#	Article	IF	CITATIONS
19	The Epidemiology of Neuromuscular Disorders: A Comprehensive Overview of the Literature. Journal of Neuromuscular Diseases, 2015, 2, 73-85.	2.6	200
20	Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurology, The, 2021, 20, 526-536.	10.2	194
21	Epidemiology of inclusion body myositis in the Netherlands: A nationwide study. Neurology, 2000, 55, 1385-1388.	1.1	187
22	Muscle-specific kinase myasthenia gravis lgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. Brain, 2012, 135, 1081-1101.	7.6	180
23	SOX Antibodies in Small-Cell Lung Cancer and Lambert-Eaton Myasthenic Syndrome: Frequency and Relation With Survival. Journal of Clinical Oncology, 2009, 27, 4260-4267.	1.6	178
24	Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology, 2019, 92, e2661-e2673.	1.1	169
25	Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss. Experimental Brain Research, 2002, 142, 91-107.	1.5	154
26	Pathophysiology of myasthenia gravis with antibodies to the acetylcholine receptor, muscle-specific kinase and low-density lipoprotein receptor-related protein 4. Autoimmunity Reviews, 2013, 12, 918-923.	5.8	143
27	Differences in clinical features between the Lambert-Eaton myasthenic syndrome with and without cancer: an analysis of 227 published cases. Clinical Neurology and Neurosurgery, 2002, 104, 359-363.	1.4	142
28	The expanding field of IgG4â€mediated neurological autoimmune disorders. European Journal of Neurology, 2015, 22, 1151-1161.	3.3	142
29	Risk for myasthenia gravis maps to a ¹⁵¹ Pro→Ala change in TNIP1 and to human leukocyte antigenâ€B*08. Annals of Neurology, 2012, 72, 927-935.	5.3	137
30	Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy. Neuromuscular Disorders, 2014, 24, 409-416.	0.6	134
31	Inter-individual differences in CpG methylation at D4Z4 correlate with clinical variability in FSHD1 and FSHD2. Human Molecular Genetics, 2015, 24, 659-669.	2.9	130
32	Dystrophin quantification and clinical correlations in Becker muscular dystrophy: implications for clinical trials. Brain, 2011, 134, 3547-3559.	7.6	125
33	Clinical Outcomes in Duchenne Muscular Dystrophy: A Study of 5345 Patients from the TREAT-NMD DMD Global Database. Journal of Neuromuscular Diseases, 2017, 4, 293-306.	2.6	125
34	Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Scientific Reports, 2017, 7, 12575.	3.3	123
35	Clinical fluctuations in MuSK myasthenia gravis are related to antigen-specific IgG4 instead of IgG1. Journal of Neuroimmunology, 2008, 195, 151-156.	2.3	122
36	Strong association of MuSK antibody-positive myasthenia gravis and HLA-DR14-DQ5. Neurology, 2006, 66, 1772-1774.	1.1	114

#	Article	IF	CITATIONS
37	Screening for Small-Cell Lung Cancer: A Follow-Up Study of Patients With Lambert-Eaton Myasthenic Syndrome. Journal of Clinical Oncology, 2008, 26, 4276-4281.	1.6	112
38	Efficacy of 3,4-Diaminopyridine and Pyridostigmine in the Treatment of Lambert–Eaton Myasthenic Syndrome: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. Clinical Pharmacology and Therapeutics, 2009, 86, 44-48.	4.7	111
39	The Lambert–Eaton myasthenic syndrome 1988–2008: A clinical picture in 97 patients. Journal of Neuroimmunology, 2008, 201-202, 153-158.	2.3	107
40	Difference in distribution of muscle weakness between myasthenia gravis and the Lambert-Eaton myasthenic syndrome. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 73, 766-768.	1.9	97
41	Dystrophin levels and clinical severity in Becker muscular dystrophy patients. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 747-753.	1.9	95
42	Cortactin autoantibodies in myasthenia gravis. Autoimmunity Reviews, 2014, 13, 1003-1007.	5.8	93
43	Evaluation of skeletal muscle DTI in patients with duchenne muscular dystrophy. NMR in Biomedicine, 2015, 28, 1589-1597.	2.8	93
44	The epidemiology of myasthenia gravis, Lambert-Eaton myasthenic syndrome and their associated tumours in the northern part of the province of South Holland. Journal of Neurology, 2003, 250, 698-701.	3.6	92
45	lgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients. Journal of Autoimmunity, 2017, 77, 104-115.	6.5	92
46	Reduced cerebral gray matter and altered white matter in boys with <scp>D</scp> uchenne muscular dystrophy. Annals of Neurology, 2014, 76, 403-411.	5.3	90
47	The Epidemiology of Neuromuscular Disorders: A Comprehensive Overview of the Literature. Journal of Neuromuscular Diseases, 2015, 2, 73-85.	2.6	89
48	Humoral responses after second and third SARS-CoV-2 vaccination in patients with immune-mediated inflammatory disorders on immunosuppressants: a cohort study. Lancet Rheumatology, The, 2022, 4, e338-e350.	3.9	88
49	Clinical aspects of myasthenia explained. Autoimmunity, 2010, 43, 344-352.	2.6	86
50	Validation of genetic modifiers for Duchenne muscular dystrophy: a multicentre study assessing <i>SPP1</i> and <i>LTBP4</i> variants. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 1060-1065.	1.9	86
51	IgG Fc N <i>-</i> Glycosylation Changes in Lambert-Eaton Myasthenic Syndrome and Myasthenia Gravis. Journal of Proteome Research, 2011, 10, 143-152.	3.7	84
52	HLA and smoking in prediction and prognosis of small cell lung cancer in autoimmune Lambert–Eaton myasthenic syndrome. Journal of Neuroimmunology, 2005, 159, 230-237.	2.3	80
53	An up-date on health-related quality of life in myasthenia gravis -results from population based cohorts. Health and Quality of Life Outcomes, 2015, 13, 115.	2.4	73
54	The expanded clinical spectrum of anti-GABABR encephalitis and added value of KCTD16 autoantibodies. Brain, 2019, 142, 1631-1643.	7.6	73

#	Article	IF	CITATIONS
55	<i>Lambert–Eaton Myasthenic Syndrome</i> . Annals of the New York Academy of Sciences, 2008, 1132, 129-134.	3.8	72
56	P/Q-type calcium channel antibodies, Lambert–Eaton myasthenic syndrome and survival in small cell lung cancer. Journal of Neuroimmunology, 2005, 164, 161-165.	2.3	65
57	Epidemiology of myasthenia gravis with anti-muscle specific kinase antibodies in the Netherlands. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 78, 417-418.	1.9	65
58	MuSK myasthenia gravis monoclonal antibodies. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e547.	6.0	64
59	A TRANSIENT NEONATAL MYASTHENIC SYNDROME WITH ANTI-MUSK ANTIBODIES. Neurology, 2008, 70, 1215-1216.	1.1	59
60	Characterization of neuromuscular synapse function abnormalities in multiple Duchenne muscular dystrophy mouse models. European Journal of Neuroscience, 2016, 43, 1623-1635.	2.6	59
61	Longitudinal epitope mapping in MuSK myasthenia gravis: implications for disease severity. Journal of Neuroimmunology, 2016, 291, 82-88.	2.3	59
62	The epidemiology of the Lambert-Eaton myasthenic syndrome in the Netherlands. Neurology, 2004, 63, 397-398.	1.1	55
63	lgG4â€mediated autoimmune diseases: a niche of antibodyâ€mediated disorders. Annals of the New York Academy of Sciences, 2018, 1413, 92-103.	3.8	54
64	Pre―and postsynaptic neuromuscular junction abnormalities in musk myasthenia. Muscle and Nerve, 2010, 42, 283-288.	2.2	53
65	Increased risk for clinical onset of myasthenia gravis during the postpartum period. Neurology, 2016, 87, 2139-2145.	1.1	53
66	Non-uniform muscle fat replacement along the proximodistal axis in Duchenne muscular dystrophy. Neuromuscular Disorders, 2017, 27, 458-464.	0.6	53
67	Genome-Wide Association Study of Late-Onset Myasthenia Gravis: Confirmation of TNFRSF11A and Identification of ZBTB10 and Three Distinct HLA Associations. Molecular Medicine, 2015, 21, 769-781.	4.4	52
68	Associated autoimmune diseases in patients with the Lambert-Eaton myasthenic syndrome and their families. Journal of Neurology, 2004, 251, 1255-1259.	3.6	51
69	Neuromuscular junction disorders. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 133, 447-466.	1.8	51
70	Lambert–Eaton myasthenic syndrome has a more progressive course in patients with lung cancer. Muscle and Nerve, 2005, 32, 226-229.	2.2	47
71	Available treatment options for the management of Lambert-Eaton myasthenic syndrome. Expert Opinion on Pharmacotherapy, 2006, 7, 1323-1336.	1.8	45
72	Pathogenic immune mechanisms at the neuromuscular synapse: the role of specific antibodyâ€binding epitopes in myasthenia gravis. Journal of Internal Medicine, 2014, 275, 12-26.	6.0	45

#	Article	IF	CITATIONS
73	Elevated phosphodiester and <i>T</i> ₂ levels can be measured in the absence of fat infiltration in Duchenne muscular dystrophy patients. NMR in Biomedicine, 2017, 30, e3667.	2.8	45
74	Antibodies against the calcium channel βâ€subunit in Lambertâ€Eaton myasthenic syndrome. Neurology, 1998, 50, 475-479.	1.1	43
75	Electrophysiological analysis of neuromuscular synaptic function in myasthenia gravis patients and animal models. Experimental Neurology, 2015, 270, 41-54.	4.1	43
76	Fatigue in patients with myasthenia gravis. A systematic review of the literature. Neuromuscular Disorders, 2020, 30, 631-639.	0.6	43
77	T2 relaxation times are increased in Skeletal muscle of DMD but not BMD patients. Muscle and Nerve, 2016, 53, 38-43.	2.2	42
78	Paraneoplastic anti-Hu serum: studies on human tumor cell lines. Journal of Neuroimmunology, 1997, 79, 202-210.	2.3	41
79	Advances and ongoing research in the treatment of autoimmune neuromuscular junction disorders. Lancet Neurology, The, 2022, 21, 189-202.	10.2	41
80	HLA class I and II in Lambert-Eaton myasthenic syndrome without associated tumor. Human Immunology, 2001, 62, 809-813.	2.4	40
81	Measuring clinical effectiveness of medicinal products for the treatment of Duchenne muscular dystrophy. Neuromuscular Disorders, 2015, 25, 96-105.	0.6	39
82	Antibodies to TRIM46 are associated with paraneoplastic neurological syndromes. Annals of Clinical and Translational Neurology, 2017, 4, 680-686.	3.7	38
83	The Effect of Plasma From Muscle-Specific Tyrosine Kinase Myasthenia Patients on Regenerating Endplates. American Journal of Pathology, 2009, 175, 1536-1544.	3.8	37
84	Respiratory and upper limb function as outcome measures in ambulant and non-ambulant subjects with Duchenne muscular dystrophy: A prospective multicentre study. Neuromuscular Disorders, 2019, 29, 261-268.	0.6	36
85	Seizure-related 6 homolog like 2 autoimmunity. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	36
86	Geographical Distribution of Myasthenia Gravis in Northern Europe - Results from a Population-Based Study from Two Countries. Neuroepidemiology, 2015, 44, 221-231.	2.3	35
87	Pathogenic IgG4 subclass autoantibodies in MuSK myasthenia gravis. Annals of the New York Academy of Sciences, 2012, 1275, 114-122.	3.8	34
88	Anti-Hu antibody titre and brain metastases before and after treatment for small cell lung cancer. Journal of Neurology, Neurosurgery and Psychiatry, 1999, 67, 353-357.	1.9	33
89	Breakthrough SARS-CoV-2 infections with the delta (B.1.617.2) variant in vaccinated patients with immune-mediated inflammatory diseases using immunosuppressants: a substudy of two prospective cohort studies. Lancet Rheumatology, The, 2022, 4, e417-e429.	3.9	33
90	Single-fiber electromyography in experimental autoimmune myasthenia gravis. Muscle and Nerve, 1990, 13, 485-492.	2.2	31

#	Article	IF	CITATIONS
91	Clinical characterisation of Becker muscular dystrophy patients predicts favourable outcome in exon-skipping therapy. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 92-98.	1.9	29
92	Functional monovalency amplifies the pathogenicity of anti-MuSK IgG4 in myasthenia gravis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
93	Prednisone 10Âdays on/10Âdays off in patients with Duchenne muscular dystrophy. Journal of Neurology, 2009, 256, 768-773.	3.6	27
94	3,4-diaminopyridine for the treatment of Lambert–Eaton myasthenic syndrome. Expert Review of Clinical Immunology, 2010, 6, 867-874.	3.0	27
95	Guidelines for pre-clinical animal and cellular models of MuSK-myasthenia gravis. Experimental Neurology, 2015, 270, 29-40.	4.1	27
96	Improved olefinic fat suppression in skeletal muscle <scp>DTI</scp> using a magnitudeâ€based dixon method. Magnetic Resonance in Medicine, 2018, 79, 152-159.	3.0	27
97	Paraneoplastic Syndromes of the Neuromuscular Junction: Therapeutic Options in Myasthenia Gravis, Lambert-Eaton Myasthenic Syndrome, and Neuromyotonia. Current Treatment Options in Neurology, 2013, 15, 224-239.	1.8	26
98	Prognostic factors for exacerbations and emergency treatments in myasthenia gravis. Journal of Neuroimmunology, 2015, 282, 123-125.	2.3	26
99	Ephedrine treatment for autoimmune myasthenia gravis. Neuromuscular Disorders, 2017, 27, 259-265.	0.6	26
100	A prospective, double-blind, randomized, placebo-controlled study on the efficacy and safety of influenza vaccination in myasthenia gravis. Vaccine, 2019, 37, 919-925.	3.8	25
101	Efgartigimod improves muscle weakness in a mouse model for muscle-specific kinase myasthenia gravis. Experimental Neurology, 2019, 317, 133-143.	4.1	25
102	Spatially localized phosphorous metabolism of skeletal muscle in Duchenne muscular dystrophy patients: 24–month follow-up. PLoS ONE, 2017, 12, e0182086.	2.5	25
103	Decremental response of the nasalis and hypothenar muscles in myasthenia gravis. Muscle and Nerve, 2003, 28, 236-238.	2.2	24
104	Neuromuscular synaptic function in mice lacking major subsets of gangliosides. Neuroscience, 2008, 156, 885-897.	2.3	24
105	Myasthenia gravis with muscle specific kinase antibodies mimicking amyotrophic lateral sclerosis. Neuromuscular Disorders, 2016, 26, 350-353.	0.6	24
106	Longâ€ŧerm followâ€up, quality of life, and survival of patients with Lambertâ€Eaton myasthenic syndrome. Neurology, 2020, 94, e511-e520.	1.1	24
107	Prolonged Ambulation in Duchenne Patients with a Mutation Amenable to Exon 44 Skipping. Journal of Neuromuscular Diseases, 2014, 1, 91-94.	2.6	24
108	Downregulation of miRNA-29, -23 and -21 in urine of Duchenne muscular dystrophy patients. Epigenomics, 2018, 10, 875-889.	2.1	23

#	Article	IF	CITATIONS
109	The feasibility of quantitative MRI of extraâ€ocular muscles in myasthenia gravis and Graves' orbitopathy. NMR in Biomedicine, 2021, 34, e4407.	2.8	23
110	Tonic pupils in Lambert-Eaton myasthenic syndrome. Muscle and Nerve, 2001, 24, 444-445.	2.2	22
111	Forty-Five Years of Duchenne Muscular Dystrophy in The Netherlands. Journal of Neuromuscular Diseases, 2014, 1, 99-109.	2.6	22
112	SOX1 antibodies in Lambert–Eaton myasthenic syndrome and screening for small cell lung carcinoma. Annals of the New York Academy of Sciences, 2012, 1275, 70-77.	3.8	20
113	Evaluation of serum MMP-9 as predictive biomarker for antisense therapy in Duchenne. Scientific Reports, 2017, 7, 17888.	3.3	20
114	Age-related susceptibility to experimental autoimmune myasthenia gravis: Immunological and electrophysiological aspects. , 1997, 20, 1091-1101.		18
115	Role of acetylcholine receptor antibody complexes in muscle in experimental autoimmune myasthenia gravis. Journal of Neuroimmunology, 1992, 36, 117-125.	2.3	17
116	FAMILIAL OCCURRENCE OF AUTOIMMUNE MYASTHENIA GRAVIS WITH DIFFERENT ANTIBODY SPECIFICITY. Neurology, 2008, 70, 2011-2013.	1.1	17
117	Heterogeneity and shifts in distribution of muscle weakness in myasthenia gravis. Neuromuscular Disorders, 2019, 29, 664-670.	0.6	17
118	Selection Approach to Identify the Optimal Biomarker Using Quantitative Muscle MRI and Functional Assessments in Becker Muscular Dystrophy. Neurology, 2021, 97, e513-e522.	1.1	17
119	Neuromuscular synaptic transmission in aged ganglioside-deficient mice. Neurobiology of Aging, 2011, 32, 157-167.	3.1	16
120	Reliability of the walking energy cost test and the six-minute walk test in boys with Duchenne muscular dystrophy. Neuromuscular Disorders, 2014, 24, 216-221.	0.6	16
121	Risk factors associated with short-term adverse events after SARS-CoV-2 vaccination in patients with immune-mediated inflammatory diseases. BMC Medicine, 2022, 20, 100.	5.5	15
122	Multiâ€parametric MR in Becker muscular dystrophy patients. NMR in Biomedicine, 2020, 33, e4385.	2.8	14
123	Prevalence and associated factors of fatigue in autoimmune myasthenia gravis. Neuromuscular Disorders, 2021, 31, 612-621.	0.6	14
124	Age-Related Longitudinal Changes in Metabolic Energy Expenditure during Walking in Boys with Duchenne Muscular Dystrophy. PLoS ONE, 2014, 9, e115200.	2.5	14
125	HLA-B8 in Patients with the Lambert-Eaton Myasthenic Syndrome Reduces Likelihood of Associated Small Cell Lung Carcinoma. Annals of the New York Academy of Sciences, 2003, 998, 200-201.	3.8	13
126	A prospective, placebo controlled study on the humoral immune response to and safety of tetanus revaccination in myasthenia gravis. Vaccine, 2017, 35, 6290-6296.	3.8	13

#	Article	IF	CITATIONS
127	Low dystrophin variability between muscles and stable expression over time in Becker muscular dystrophy using capillary Western immunoassay. Scientific Reports, 2021, 11, 5952.	3.3	13
128	Paratope- and framework-related cross-reactive idiotopes on anti-acetylcholine receptor antibodies. Journal of Immunology, 1991, 146, 941-8.	0.8	13
129	Ephedrine for myasthenia gravis, neonatal myasthenia and the congenital myasthenic syndromes. The Cochrane Library, 2014, 2014, CD010028.	2.8	12
130	Prevalence and clinical aspects of immigrants with myasthenia gravis in northern Europe. Muscle and Nerve, 2017, 55, 819-827.	2.2	12
131	Ocular Weakness in Myasthenia Gravis: Changes in Affected Muscles are a Distinct Clinical Feature. Journal of Neuromuscular Diseases, 2019, 6, 369-376.	2.6	12
132	The utility of anti-SOX2 antibodies for cancer prediction in patients with paraneoplastic neurological disorders. Journal of Neuroimmunology, 2019, 326, 14-18.	2.3	12
133	Association of Elbow Flexor MRI Fat Fraction With Loss of Hand-to-Mouth Movement in Patients With Duchenne Muscular Dystrophy. Neurology, 2021, 97, e1737-e1742.	1.1	12
134	Studying the role of dystrophin-associated proteins in influencing Becker muscular dystrophy disease severity. Neuromuscular Disorders, 2015, 25, 231-237.	0.6	11
135	Ephedrine as add-on therapy for patients with myasthenia gravis: protocol for a series of randomised, placebo-controlled n-of-1 trials. BMJ Open, 2015, 5, e007863.	1.9	11
136	Temporalis Muscle Hypertrophy and Reduced Skull Eccentricity in Duchenne Muscular Dystrophy. Journal of Child Neurology, 2014, 29, 1344-1348.	1.4	10
137	An n-of-one RCT for intravenous immunoglobulin G for inflammation in hereditary neuropathy with liability to pressure palsy (HNPP). Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 790-791.	1.9	10
138	Distinct representation of muscle weakness in QMG and MG-ADL. Lancet Neurology, The, 2018, 17, 204-205.	10.2	10
139	Neuromuscular synapse electrophysiology in myasthenia gravis animal models. Annals of the New York Academy of Sciences, 2018, 1412, 146-153.	3.8	10
140	Sensitivity of MGâ€ADL for generalized weakness in myasthenia gravis. European Journal of Neurology, 2019, 26, 947-950.	3.3	10
141	Accuracy of patient-reported data for an online patient registry of autoimmune myasthenia gravis and Lambert-Eaton myasthenic syndrome. Neuromuscular Disorders, 2021, 31, 622-632.	0.6	10
142	Occurrence of symptoms in different stages of <scp>Duchenne</scp> muscular dystrophy and their impact on social participation. Muscle and Nerve, 2021, 64, 701-709.	2.2	9
143	Myasthenia gravis: do not forget the patient perspective. Neuromuscular Disorders, 2021, 31, 1287-1295.	0.6	9
144	Cytokine Profiling of Serum Allows Monitoring of Disease Progression in Inclusion Body Myositis. Journal of Neuromuscular Diseases, 2017, 4, 327-335.	2.6	8

#	Article	IF	CITATIONS
145	Aggregated N-of-1 trials for unlicensed medicines for small populations: an assessment of a trial with ephedrine for myasthenia gravis. Orphanet Journal of Rare Diseases, 2017, 12, 88.	2.7	8
146	Serum Acetylcholine Receptor Antibodies Before the Clinical Onset of Myasthenia Gravis. Journal of Neuromuscular Diseases, 2018, 5, 261-264.	2.6	8
147	Lung cancer prediction in Lambert-Eaton myasthenic syndrome in a prospective cohort. Scientific Reports, 2020, 10, 10546.	3.3	8
148	Myasthenia Gravis Impairment Index: Sensitivity for Change in Generalized Muscle Weakness. Journal of Neuromuscular Diseases, 2020, 7, 297-300.	2.6	8
149	Repetitive ocular vestibular evoked myogenic potentials in myasthenia gravis. Neurology, 2020, 94, e1693-e1701.	1.1	7
150	In Vivo Effects of Neonatal Administration O Antiidiotype Antibodies on Experimental Autoimmune Myasthenia Gravis. Autoimmunity, 1991, 10, 173-179.	2.6	6
151	Lowering the cutoff value for increment increases the sensitivity for the diagnosis of Lambertâ€Eaton myasthenic syndrome. Muscle and Nerve, 2020, 62, 111-114.	2.2	6
152	Myasthenia gravis: subgroup classifications – Authors' reply. Lancet Neurology, The, 2016, 15, 357-358.	10.2	5
153	Preserved thenar muscles in nonâ€ambulant Duchenne muscular dystrophy patients. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 694-703.	7.3	5
154	Proton Magnetic Resonance Spectroscopy Indicates Preserved Cerebral Biochemical Composition in Duchenne Muscular Dystrophy Patients. Journal of Neuromuscular Diseases, 2017, 4, 53-58.	2.6	4
155	Passive transfer models of myasthenia gravis with muscleâ€specific kinase antibodies. Annals of the New York Academy of Sciences, 2018, 1413, 111-118.	3.8	4
156	Translation and validation of the 15â€item Myasthenia Gravis Quality of life scale in Dutch. Muscle and Nerve, 2018, 57, 206-211.	2.2	4
157	Novel free-circulating and extracellular vesicle-derived miRNAs dysregulated in Duchenne muscular dystrophy. Epigenomics, 2020, 12, 1899-1915.	2.1	4
158	Clinical Management of Duchenne Muscular Dystrophy in the Netherlands: Barriers to and Proposals for the Implementation of the International Clinical Practice Guidelines. Journal of Neuromuscular Diseases, 2021, 8, 503-512.	2.6	3
159	The Black Box of Technological Outcome Measures: An Example in Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2022, 9, 555-569.	2.6	3
160	Letters to the editor. Muscle and Nerve, 1993, 16, 109-117.	2.2	2
161	Diagnosis of becker muscular dystrophy: Results of Reâ€analysis of DNA samples. Muscle and Nerve, 2016, 53, 44-48.	2.2	2
162	Treating muscle-specific kinase myasthenia gravis from the inside out. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	2

#	Article	IF	CITATIONS
163	Compliance to DMD Care Considerations in the Netherlands. Journal of Neuromuscular Diseases, 2021, 8, 927-938.	2.6	2
164	DOP27 Humoral immune response after SARS-CoV-2 vaccination in patients with immune-mediated inflammatory diseases treated with immunosuppressive therapy - a Target to B! study. Journal of Crohn's and Colitis, 2022, 16, i079-i079.	1.3	2
165	â€~Spontaneous' Myasthenia Gravis in a rat after syngeneic bone marrow transplantation. Journal of Autoimmunity, 1989, 2, 909-910.	6.5	1
166	Synaptic dysfunction does not contribute to muscle weakness in inclusion-body myositis. Muscle and Nerve, 2007, 35, 266-267.	2.2	1
167	Exon skipping for DMD. Orphanet Journal of Rare Diseases, 2012, 7, A20.	2.7	1
168	Activity limitations in myasthenia gravis and relation to clinical variables. Muscle and Nerve, 2017, 56, 64-70.	2.2	1
169	The neurocognitive profile of adults with Becker muscular dystrophy in the Netherlands. Journal of Neuromuscular Diseases, 2022, , 1-11.	2.6	1
170	Experimental autoimmune Myasthenia Gravis analysed by stimulated single fiber electromyography. Journal of Autoimmunity, 1989, 2, 919-920.	6.5	0
171	Monoclonal and polyclonal anti-acetylcholine receptor antibodies share crossreactive idiotopes. Journal of Autoimmunity, 1989, 2, 906.	6.5	0
172	3,4-Diaminopyridine for myasthenia gravis. The Cochrane Library, 0, , .	2.8	0
173	The Lambert-Eaton Myasthenic Syndrome. , 2014, , 189-204.		0
174	Treatment options for Lambert–Eaton myasthenic syndrome. Expert Opinion on Orphan Drugs, 2014, 2, 159-167.	0.8	0
175	Neuromuscular diseases: hope and hurdles in clinical trials. Lancet Neurology, The, 2017, 16, 12-13.	10.2	0
176	Lambert-Eaton Myasthenic Syndrome. , 2014, , 1089-1099.		0
177	Test–Retest Reliability of Repetitive Ocular Vestibular Evoked Myogenic Potentials in Myasthenia Gravis Patients and Healthy Control Subjects. Journal of Clinical Neurophysiology, 2024, 41, 265-270.	1.7	0