Yuka Morikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4584236/publications.pdf

Version: 2024-02-01

279798 477307 2,942 33 23 29 citations h-index g-index papers 36 36 36 4110 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Integrated multi-omic characterization of congenital heart disease. Nature, 2022, 608, 181-191.	27.8	37
2	ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nature Cell Biology, 2020, 22, 1346-1356.	10.3	130
3	YAP Partially Reprograms Chromatin Accessibility to Directly Induce Adult Cardiogenesis InÂVivo. Developmental Cell, 2019, 48, 765-779.e7.	7.0	171
4	Hippo Signaling Plays an Essential Role in Cell State Transitions during Cardiac Fibroblast Development. Developmental Cell, 2018, 45, 153-169.e6.	7.0	144
5	Pitx2 maintains mitochondrial function during regeneration to prevent myocardial fat deposition. Development (Cambridge), 2018, 145, .	2.5	28
6	Hippo pathway deficiency reverses systolic heart failure after infarction. Nature, 2017, 550, 260-264.	27.8	333
7	Dystrophin–glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation. Nature, 2017, 547, 227-231.	27.8	232
8	Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury. Nature, 2016, 534, 119-123.	27.8	244
9	Probing myocardium biomechanics using quantitative optical coherence elastography. , 2015, , .		2
10	Quantitative shear wave imaging optical coherence tomography for noncontact mechanical characterization of myocardium. , 2015, , .		0
11	Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice. Science Signaling, 2015, 8, ra41.	3.6	178
12	Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography. Biomedical Optics Express, 2014, 5, 1980.	2.9	94
13	Abstract 258: Pitx2 Promotes Murine Myocardial Regeneration after Myocardial Injury. Circulation Research, 2014, 115, .	4.5	0
14	Hippo signaling impedes adult heart regeneration. Development (Cambridge), 2013, 140, 4683-4690.	2.5	400
15	Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nature Cell Biology, 2013, 15, 1282-1293.	10.3	126
16	Bmp signaling represses <i>Vegfa</i> to promote outflow tract cushion development. Development (Cambridge), 2013, 140, 3395-3402.	2.5	48
17	Yin-Yang 1, a New Player in Early Heart Development. Circulation Research, 2013, 112, 876-877.	4.5	5
18	Hippo Signaling in Heart Development. , 2013, , 293-304.		O

#	Article	IF	CITATIONS
19	Expression Level of Hand2 Affects Specification of Enteric Neurons and Gastrointestinal Function in Mice. Gastroenterology, 2011, 141, 576-587.e6.	1.3	38
20	Hand2 Loss-of-Function in <i>Hand1</i> -Expressing Cells Reveals Distinct Roles in Epicardial and Coronary Vessel Development. Circulation Research, 2011, 108, 940-949.	4.5	66
21	A Tlx2â€Cre mouse line uncovers essential roles for hand1 in extraembryonic and lateral mesoderm. Genesis, 2010, 48, 479-484.	1.6	12
22	Dicer is required for survival of differentiating neural crest cells. Developmental Biology, 2010, 340, 459-467.	2.0	121
23	Regulation of sympathetic and enteric nervous system development by Hand2. FASEB Journal, 2010, 24, 300.4.	0.5	0
24	BMP signaling regulates sympathetic nervous system development through Smad4-dependent and -independent pathways. Development (Cambridge), 2009, 136, 3575-3584.	2.5	91
25	Hand2 is required in the epithelium for palatogenesis in mice. Developmental Biology, 2009, 330, 131-141.	2.0	68
26	Sonic hedgehog signaling is required for sympathetic nervous system development. NeuroReport, 2009, 20, 684-688.	1.2	6
27	Cardiac Neural Crest Expression of Hand2 Regulates Outflow and Second Heart Field Development. Circulation Research, 2008, 103, 1422-1429.	4.5	65
28	Hand2 is necessary for terminal differentiation of enteric neurons from crest-derived precursors but not for their migration into the gut or for formation of glia. Development (Cambridge), 2007, 134, 2237-2249.	2.5	74
29	Hand2 determines the noradrenergic phenotype in the mouse sympathetic nervous system. Developmental Biology, 2007, 307, 114-126.	2.0	89
30	The basic helix-loop-helix factor Hand2 regulates autonomic nervous system development. Developmental Dynamics, 2005, 234, 613-621.	1.8	24
31	Extra-embryonic vasculature development is regulated by the transcription factor HAND1. Development (Cambridge), 2004, 131, 2195-2204.	2.5	74
32	JAB1 enhances HAND2 transcriptional activity by regulating HAND2 DNA binding. Journal of Neuroscience Research, 2004, 76, 613-622.	2.9	22
33	Absolute chemical structure of the myxobacterial pheromone of Stigmatella aurantiacathat induces the formation of its fruiting body. FEMS Microbiology Letters, 1998, 165, 29-34.	1.8	17