
Diego F GÃ³mez-Casati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4582983/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	CBM20CP, a novel functional protein of starch metabolism in green algae. Plant Molecular Biology, 2022, 108, 363-378.	3.9	6
2	Interaction Between Plant Secondary Metabolites and the Human Metabolome. , 2021, , 526-531.		0
3	Fe-S Protein Synthesis in Green Algae Mitochondria. Plants, 2021, 10, 200.	3.5	4
4	PAP/SAL1 retrograde signaling pathway modulates iron deficiency response in alkaline soils. Plant Science, 2021, 304, 110808.	3.6	5
5	Characterization of SdGA, a cold-adapted glucoamylase from Saccharophagus degradans. Biotechnology Reports (Amsterdam, Netherlands), 2021, 30, e00625.	4.4	6
6	Identification and characterization of ChlreSEX4, a novel glucan phosphatase from Chlamydomonas reinhardtii green alga. Archives of Biochemistry and Biophysics, 2020, 680, 108235.	3.0	1
7	The PAP/SAL1 retrograde signaling pathway is involved in iron homeostasis. Plant Molecular Biology, 2020, 102, 323-337.	3.9	22
8	Molecular basis of clinical metabolomics. , 2020, , 47-55.		0
9	Iron-Sulfur Cluster Complex Assembly in the Mitochondria of Arabidopsis thaliana. Plants, 2020, 9, 1171.	3.5	8
10	Functional and Structural Characterization of a Novel Isoamylase from Ostreococcus tauri and Role of the N-Terminal Domain. Open Biotechnology Journal, 2020, 14, 1-11.	1.2	0
11	Editorial: Metallic Micronutrient Homeostasis in Plants. Frontiers in Plant Science, 2019, 10, 927.	3.6	3
12	Altered levels of mitochondrial NFS1 affect cellular Fe and S contents in plants. Plant Cell Reports, 2019, 38, 981-990.	5.6	11
13	Ferrochelatase activity of plant frataxin. Biochimie, 2019, 156, 118-122.	2.6	17
14	Drugs for the Treatment of Mitochondrial Diseases. Current Chemical Biology, 2019, 13, 19-24.	0.5	0
15	Copper redox chemistry of plant frataxins. Journal of Inorganic Biochemistry, 2018, 180, 135-140.	3.5	8
16	Plant Frataxin in Metal Metabolism. Frontiers in Plant Science, 2018, 9, 1706.	3.6	13
17	Starch Synthesis in Ostreococcus tauri: The Starch-Binding Domains of Starch Synthase III-B Are Essential for Catalytic Activity. Frontiers in Plant Science, 2018, 9, 1541.	3.6	9
18	Over-expression of SINAL7 increases biomass and drought tolerance, and also delays senescence in Arabidopsis. Journal of Biotechnology, 2018, 283, 11-21.	3.8	9

DIEGO F GÃ³MEZ-CASATI

#	Article	IF	CITATIONS
19	Identification and analysis of OsttaDSP, a phosphoglucan phosphatase from Ostreococcus tauri. PLoS ONE, 2018, 13, e0191621.	2.5	5
20	Applications of Bioinformatics to Plant Biotechnology. Current Issues in Molecular Biology, 2018, 27, 89-104.	2.4	6
21	Development of fast and simple chromogenic methods for glucan phosphatases in-gel activity assays. Analytical Biochemistry, 2017, 517, 36-39.	2.4	2
22	Identification and characterization of a novel starch branching enzyme from the picoalgae Ostreococcus tauri. Archives of Biochemistry and Biophysics, 2017, 618, 52-61.	3.0	11
23	Identification of two frataxin isoforms in Zea mays : Structural and functional studies. Biochimie, 2017, 140, 34-47.	2.6	11
24	Identification of a novel starch synthase III from the picoalgae Ostreococcus tauri. Biochimie, 2017, 133, 37-44.	2.6	10
25	The targeting of starch binding domains from starch synthase III to the cell wall alters cell wall composition and properties. Plant Molecular Biology, 2017, 93, 121-135.	3.9	12
26	The Significance of Metabolomics in Human Health. , 2016, , 89-100.		3
27	Altered levels of AtHSCB disrupts iron translocation from roots to shoots. Plant Molecular Biology, 2016, 92, 613-628.	3.9	14
28	Characterization of a novel Kazal-type serine proteinase inhibitor of Arabidopsis thaliana. Biochimie, 2016, 123, 85-94.	2.6	16
29	The E3 ubiquitin-ligase SEVEN IN ABSENTIA like 7 mono-ubiquitinates glyceraldehyde-3-phosphate dehydrogenase 1 isoform in vitro and is required for its nuclear localization in Arabidopsis thaliana. International Journal of Biochemistry and Cell Biology, 2016, 70, 48-56.	2.8	27
30	Omics Approaches for the Engineering of Pathogen Resistant Plants. Current Issues in Molecular Biology, 2016, 19, 89-98.	2.4	7
31	A simple method for the addition of rotenone in <i>Arabidopsis thaliana</i> leaves. Plant Signaling and Behavior, 2015, 10, e1073871.	2.4	2
32	Functional demonstrations of starch binding domains present in Ostreococcus tauri starch synthases isoforms. BMC Research Notes, 2015, 8, 613.	1.4	15
33	Starch Metabolism in Green Plants. , 2015, , 329-376.		4
34	Frataxin Is Localized to Both the Chloroplast and Mitochondrion and Is Involved in Chloroplast Fe-S Protein Function in Arabidopsis. PLoS ONE, 2015, 10, e0141443.	2.5	36
35	Study of Oxidative Stress and Genotoxicity by Arsenic Contamination in Glycine max. L. International Journal of Plant & Soil Science, 2015, 8, 1-15.	0.2	3
36	The mitochondrial proteins AtHscB and AtIsu1 involved in Fe–S cluster assembly interact with the Hsp70-type chaperon AtHscA2 and modulate its catalytic activity. Mitochondrion, 2014, 19, 375-381.	3.4	21

#	Article	IF	CITATIONS
37	Starch metabolism in green algae. Starch/Staerke, 2014, 66, 28-40.	2.1	73
38	Starch Metabolism in Green Plants. , 2014, , 1-42.		1
39	Improving the glycosyltransferase activity of Agrobacterium tumefaciens glycogen synthase by fusion of N-terminal starch binding domains (SBDs). Biochimie, 2013, 95, 1865-1870.	2.6	7
40	Metabolomics in Plants and Humans: Applications in the Prevention and Diagnosis of Diseases. BioMed Research International, 2013, 2013, 1-11.	1.9	76
41	Characterization of the Arabidopsis thaliana E3 Ubiquitin-Ligase AtSINAL7 and Identification of the Ubiquitination Sites. PLoS ONE, 2013, 8, e73104.	2.5	11
42	Polysaccharide-synthesizing Glycosyltransferases and Carbohydrate Binding Modules: the case of Starch Synthase III. Protein and Peptide Letters, 2013, 20, 856-863.	0.9	17
43	Research on Plants for the Understanding of Diseases of Nuclear and Mitochondrial Origin. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-12.	3.0	7
44	Contribution of Yeast and Plant Research for Improving Human Health. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-2.	3.0	0
45	Structural and Functional Studies of the Mitochondrial Cysteine Desulfurase from Arabidopsis thaliana. Molecular Plant, 2012, 5, 1001-1010.	8.3	36
46	Exploring frataxin function. IUBMB Life, 2012, 64, 56-63.	3.4	37
47	An enzyme-coupled continuous spectrophotometric assay for glycogen synthases. Molecular Biology Reports, 2012, 39, 585-591.	2.3	18
48	The mitochondrial protein frataxin is essential for heme biosynthesis in plants. FEBS Journal, 2011, 278, 470-481.	4.7	37
49	Preferential binding of SBD from <i>Arabidopsis thaliana</i> SSIII to polysaccharides: Study of amino acid residues involved. Starch/Staerke, 2011, 63, 451-460.	2.1	14
50	Effect of Mitochondrial Dysfunction on Carbon Metabolism and Gene Expression in Flower Tissues of Arabidopsis thaliana. Molecular Plant, 2011, 4, 127-143.	8.3	48
51	Mitochondrial dysfunction affects chloroplast functions. Plant Signaling and Behavior, 2011, 6, 1904-1907.	2.4	6
52	The starchâ€binding capacity of the noncatalytic SBD2 region and the interaction between the N―and Câ€ŧerminal domains are involved in the modulation of the activity of starch synthase III from <i>Arabidopsis thaliana</i> . FEBS Journal, 2010, 277, 428-440.	4.7	42
53	Heterologous expression of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Triticum aestivum and Arabidopsis thaliana. Biochimie, 2010, 92, 909-913.	2.6	7
54	Nitric oxide accumulation is required to protect against ironâ€mediated oxidative stress in frataxinâ€deficient Arabidopsis plants. FEBS Letters, 2009, 583, 542-548.	2.8	72

#	Article	IF	CITATIONS
55	Functional and structural characterization of the catalytic domain of the starch synthase III from <i>Arabidopsis thaliana </i> . Proteins: Structure, Function and Bioinformatics, 2008, 70, 31-40.	2.6	42
56	Role of the N-Terminal Starch-Binding Domains in the Kinetic Properties of Starch Synthase III from <i>Arabidopsis thaliana</i> . Biochemistry, 2008, 47, 3026-3032.	2.5	66
57	Characterization of Arabidopsis Lines Deficient in GAPC-1, a Cytosolic NAD-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase. Plant Physiology, 2008, 148, 1655-1667.	4.8	115
58	Expression and one-step purification of recombinant Arabidopsis thaliana frataxin homolog (AtFH). Protein Expression and Purification, 2007, 51, 157-161.	1.3	20
59	Starch-synthase III family encodes a tandem of three starch-binding domains. Proteins: Structure, Function and Bioinformatics, 2006, 65, 27-31.	2.6	35
60	Deficiency of Arabidopsis thaliana frataxin alters activity of mitochondrial Fe-S proteins and induces oxidative stress. Plant Journal, 2006, 48, 873-882.	5.7	97
61	Nuclear-encoded mitochondrial complex I gene expression is restored toÂnormal levels byÂinhibition ofÂunedited ATP9 transgene expression inÂArabidopsisÂthaliana. Plant Physiology and Biochemistry, 2006, 44, 1-6.	5.8	10
62	Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase. Plant Molecular Biology, 2006, 61, 945-957.	3.9	82
63	Gamma carbonic anhydrases in plant mitochondria. Plant Molecular Biology, 2004, 55, 193-207.	3.9	124
64	Gamma carbonic anhydrase like complex interact with plant mitochondrial complex I. Plant Molecular Biology, 2004, 56, 947-957.	3.9	66
65	The ADP-glucose pyrophosphorylase fromEscherichia colicomprises two tightly bound distinct domains. FEBS Letters, 2004, 573, 99-104.	2.8	25
66	Functional and molecular characterization of the frataxin homolog fromArabidopsis thaliana,. FEBS Letters, 2004, 576, 141-144.	2.8	56
67	Ultrasensitive behavior in the synthesis of storage polysaccharides in cyanobacteria. Planta, 2003, 216, 969-975.	3.2	35
68	A mitochondrial dysfunction induces the expression of nuclear-encoded complex I genes in engineered male sterile Arabidopsis thaliana. FEBS Letters, 2002, 532, 70-74.	2.8	38
69	On the interaction of substrate analogues with non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from celery leaves. Plant Science, 2002, 162, 689-696.	3.6	5
70	ADP-glucose pyrophosphorylase from wheat endosperm. Purification and characterization of an enzyme with novel regulatory properties. Planta, 2002, 214, 428-434.	3.2	91
71	Identification of Functionally Important Amino-Terminal Arginines ofAgrobacterium tumefaciensADP-Glucose Pyrophosphorylase by Alanine Scanning Mutagenesisâ€. Biochemistry, 2001, 40, 10169-10178.	2.5	41
72	ULTRASENSITIVITY IN (SUPRA)MOLECULARLY ORGANIZED AND CROWDED ENVIRONMENTS. Cell Biology International, 2001, 25, 1091-1099.	3.0	17

#	Article	IF	CITATIONS
73	Measurement of the glycogen synthetic pathway in permeabilized cells of cyanobacteria. FEMS Microbiology Letters, 2001, 194, 7-11.	1.8	12
74	Studies on the Effect of Temperature on the Activity and Stability of Cyanobacterial ADP-Glucose Pyrophosphorylase. Archives of Biochemistry and Biophysics, 2000, 384, 319-326.	3.0	8
75	Structural and kinetic characterization of NADP-dependent, non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from celery leaves. Plant Science, 2000, 154, 107-115.	3.6	29
76	A simple laboratory experiment for the teaching of the assay and kinetic characterization of enzymes. Biochemical Education, 1997, 25, 106-109.	0.1	6