
Lynne S Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4582685/publications.pdf Version: 2024-02-01

IVNNESTAVIOR

#	Article	IF	CITATIONS
1	Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. , 1997, 14, 1691-1698.		790
2	A Classification System to Assess the Crystallization Tendency of Organic Molecules from Undercooled Melts. Journal of Pharmaceutical Sciences, 2010, 99, 3787-3806.	1.6	535
3	Theoretical and Practical Approaches for Prediction of Drug–Polymer Miscibility and Solubility. Pharmaceutical Research, 2006, 23, 2417-2426.	1.7	491
4	Estimation of Drug–Polymer Miscibility and Solubility in Amorphous Solid Dispersions Using Experimentally Determined Interaction Parameters. Pharmaceutical Research, 2009, 26, 139-151.	1.7	420
5	Understanding the Behavior of Amorphous Pharmaceutical Systems during Dissolution. Pharmaceutical Research, 2010, 27, 608-618.	1.7	395
6	Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Advanced Drug Delivery Reviews, 2012, 64, 396-421.	6.6	379
7	Influence of Different Polymers on the Crystallization Tendency of Molecularly Dispersed Amorphous Felodipine. Journal of Pharmaceutical Sciences, 2006, 95, 2692-2705.	1.6	327
8	Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 493-499.	2.0	325
9	Physical chemistry of supersaturated solutions and implications for oral absorption. Advanced Drug Delivery Reviews, 2016, 101, 122-142.	6.6	286
10	Liquid–Liquid Phase Separation in Highly Supersaturated Aqueous Solutions of Poorly Water-Soluble Drugs: Implications for Solubility Enhancing Formulations. Crystal Growth and Design, 2013, 13, 1497-1509.	1.4	273
11	A Comparison of the Physical Stability of Amorphous Felodipine and Nifedipine Systems. Pharmaceutical Research, 2006, 23, 2306-2316.	1.7	253
12	Dissolution and Precipitation Behavior of Amorphous Solid Dispersions. Journal of Pharmaceutical Sciences, 2011, 100, 3316-3331.	1.6	231
13	The quantitative analysis of crystallinity using FT-Raman spectroscopy. , 1998, 15, 755-761.		225
14	Maintaining Supersaturation in Aqueous Drug Solutions: Impact of Different Polymers on Induction Times. Crystal Growth and Design, 2013, 13, 740-751.	1.4	203
15	Phase Behavior of Poly(vinylpyrrolidone) Containing Amorphous Solid Dispersions in the Presence of Moisture. Molecular Pharmaceutics, 2009, 6, 1492-1505.	2.3	202
16	Pharmaceutical Applications of Cellulose Ethers and Cellulose Ether Esters. Biomacromolecules, 2018, 19, 2351-2376.	2.6	192
17	Understanding Polymer Properties Important for Crystal Growth Inhibition—Impact of Chemically Diverse Polymers on Solution Crystal Growth of Ritonavir. Crystal Growth and Design, 2012, 12, 3133-3143.	1.4	186
18	Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharmaceutica Sinica B, 2021, 11, 2505-2536.	5.7	182

#	Article	IF	CITATIONS
19	Kinetic Study of Catechin Stability: Effects of pH, Concentration, and Temperature. Journal of Agricultural and Food Chemistry, 2012, 60, 12531-12539.	2.4	177
20	Mixing Behavior of Colyophilized Binary Systems. Journal of Pharmaceutical Sciences, 1998, 87, 694-701.	1.6	173
21	Evaluation of Drug-Polymer Miscibility in Amorphous Solid Dispersion Systems. Pharmaceutical Research, 2009, 26, 2523-2534.	1.7	173
22	Sugar–polymer hydrogen bond interactions in lyophilized amorphous mixtures. Journal of Pharmaceutical Sciences, 1998, 87, 1615-1621.	1.6	171
23	Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly(vinyl pyrrolidone). Journal of Pharmaceutical Sciences, 2010, 99, 169-185.	1.6	169
24	Fourier transform Raman spectroscopic study of the interaction of water vapor with amorphous polymers. Journal of Pharmaceutical Sciences, 2001, 90, 888-901.	1.6	163
25	Crystallization of Amorphous Solid Dispersions of Resveratrol during Preparation and Storage—Impact of Different Polymers. Journal of Pharmaceutical Sciences, 2013, 102, 171-184.	1.6	159
26	Effect of Polymer Hygroscopicity on the Phase Behavior of Amorphous Solid Dispersions in the Presence of Moisture. Molecular Pharmaceutics, 2010, 7, 477-490.	2.3	156
27	Effects of Polymer Type and Storage Relative Humidity on the Kinetics of Felodipine Crystallization from Amorphous Solid Dispersions. Pharmaceutical Research, 2009, 26, 2599-2606.	1.7	150
28	Crystallization Tendency of Active Pharmaceutical Ingredients Following Rapid Solvent Evaporation—Classification and Comparison with Crystallization Tendency from Under cooled Melts. Journal of Pharmaceutical Sciences, 2010, 99, 3826-3838.	1.6	148
29	Enhancements and Limits in Drug Membrane Transport Using Supersaturated Solutions of Poorly Water Soluble Drugs. Journal of Pharmaceutical Sciences, 2014, 103, 2736-2748.	1.6	148
30	Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohydrate Polymers, 2013, 98, 1108-1116.	5.1	147
31	Crystallization Monitoring by Raman Spectroscopy:Â Simultaneous Measurement of Desupersaturation Profile and Polymorphic Form in Flufenamic Acid Systems. Industrial & Engineering Chemistry Research, 2005, 44, 1233-1240.	1.8	140
32	Exploiting the Phenomenon of Liquid–Liquid Phase Separation for Enhanced and Sustained Membrane Transport of a Poorly Water-Soluble Drug. Molecular Pharmaceutics, 2016, 13, 2059-2069.	2.3	139
33	Ability of Different Polymers to Inhibit the Crystallization of Amorphous Felodipine in the Presence of Moisture. Pharmaceutical Research, 2008, 25, 969-978.	1.7	138
34	A spectroscopic investigation of hydrogen bond patterns in crystalline and amorphous phases in dihydropyridine calcium channel blockers. Pharmaceutical Research, 2002, 19, 477-483.	1.7	134
35	Use of In-Line Near-Infrared Spectroscopy in Combination with Chemometrics for Improved Understanding of Pharmaceutical Processes. Analytical Chemistry, 2005, 77, 556-563.	3.2	132
36	Water-Solids Interactions: Deliquescence. Annual Review of Food Science and Technology, 2010, 1, 41-63.	5.1	131

#	Article	IF	CITATIONS
37	Characterizing the Impact of Hydroxypropylmethyl Cellulose on the Growth and Nucleation Kinetics of Felodipine from Supersaturated Solutions. Crystal Growth and Design, 2012, 12, 1538-1547.	1.4	120
38	pH-Induced Precipitation Behavior of Weakly Basic Compounds: Determination of Extent and Duration of Supersaturation Using Potentiometric Titration and Correlation to Solid State Properties. Pharmaceutical Research, 2012, 29, 2738-2753.	1.7	118
39	Assessment of the Amorphous "Solubility―of a Group of Diverse Drugs Using New Experimental and Theoretical Approaches. Molecular Pharmaceutics, 2015, 12, 484-495.	2.3	117
40	Role of polymer chemistry in influencing crystal growth rates from amorphous felodipine. CrystEngComm, 2010, 12, 2390.	1.3	116
41	Relationship between amorphous solid dispersion in vivo absorption and in vitro dissolution: phase behavior during dissolution, speciation, and membrane mass transport. Journal of Controlled Release, 2018, 292, 172-182.	4.8	116
42	Congruent release of drug and polymer: A "sweet spot―in the dissolution of amorphous solid dispersions. Journal of Controlled Release, 2019, 298, 68-82.	4.8	115
43	Understanding the Tendency of Amorphous Solid Dispersions to Undergo Amorphous–Amorphous Phase Separation in the Presence of Absorbed Moisture. AAPS PharmSciTech, 2011, 12, 1209-1219.	1.5	114
44	Dissolution Performance of High Drug Loading Celecoxib Amorphous Solid Dispersions Formulated with Polymer Combinations. Pharmaceutical Research, 2016, 33, 739-750.	1.7	112
45	In-Line Monitoring of Hydrate Formation during Wet Granulation Using Raman Spectroscopy. Journal of Pharmaceutical Sciences, 2005, 94, 209-219.	1.6	110
46	Impact of Surfactants on the Crystallization of Aqueous Suspensions of Celecoxib Amorphous Solid Dispersion Spray Dried Particles. Molecular Pharmaceutics, 2015, 12, 533-541.	2.3	108
47	Non-Sink Dissolution Conditions for Predicting Product Quality and InÂVivo Performance of Supersaturating Drug Delivery Systems. Journal of Pharmaceutical Sciences, 2016, 105, 2477-2488.	1.6	107
48	Evaluation of Solid‧tate Forms Present in Tablets by Raman Spectroscopy. Journal of Pharmaceutical Sciences, 2000, 89, 1342-1353.	1.6	106
49	Insights into the Dissolution Mechanism of Ritonavir–Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance. Molecular Pharmaceutics, 2019, 16, 1327-1339.	2.3	106
50	Glass–Liquid Phase Separation in Highly Supersaturated Aqueous Solutions of Telaprevir. Molecular Pharmaceutics, 2015, 12, 496-503.	2.3	105
51	Effect of Molecular Weight, Temperature, and Additives on the Moisture Sorption Properties of Polyethylene Glycol. Journal of Pharmaceutical Sciences, 2010, 99, 154-168.	1.6	104
52	Solid dispersion of quercetin in cellulose derivative matrices influences both solubility and stability. Carbohydrate Polymers, 2013, 92, 2033-2040.	5.1	104
53	Impact of Solubilizing Additives on Supersaturation and Membrane Transport of Drugs. Pharmaceutical Research, 2015, 32, 3350-3364.	1.7	101
54	Dissolution of Danazol Amorphous Solid Dispersions: Supersaturation and Phase Behavior as a Function of Drug Loading and Polymer Type. Molecular Pharmaceutics, 2016, 13, 223-231.	2.3	101

#	Article	IF	CITATIONS
55	A comparison of alternative polymer excipients and processing methods for making solid dispersions of a poorly water soluble drug. International Journal of Pharmaceutics, 2001, 222, 139-151.	2.6	95
56	Role of Salt and Excipient Properties on Disproportionation in the Solid-State. Pharmaceutical Research, 2009, 26, 2015-2026.	1.7	93
57	Small Scale Screening To Determine the Ability of Different Polymers To Inhibit Drug Crystallization upon Rapid Solvent Evaporation. Molecular Pharmaceutics, 2010, 7, 1328-1337.	2.3	92
58	Degradation Kinetics of Catechins in Green Tea Powder: Effects of Temperature and Relative Humidity. Journal of Agricultural and Food Chemistry, 2011, 59, 6082-6090.	2.4	92
59	Recrystallization of Nifedipine and Felodipine from Amorphous Molecular Level Solid Dispersions Containing Poly(vinylpyrrolidone) and Sorbed Water. Pharmaceutical Research, 2008, 25, 647-656.	1.7	91
60	pH-Dependent Liquid–Liquid Phase Separation of Highly Supersaturated Solutions of Weakly Basic Drugs. Molecular Pharmaceutics, 2015, 12, 2365-2377.	2.3	91
61	Impact of Polymers on Crystal Growth Rate of Structurally Diverse Compounds from Aqueous Solution. Molecular Pharmaceutics, 2013, 10, 2381-2393.	2.3	90
62	Tailoring supersaturation from amorphous solid dispersions. Journal of Controlled Release, 2018, 279, 114-125.	4.8	90
63	Inhibition of solution crystal growth of ritonavir by cellulose polymers – factors influencing polymer effectiveness. CrystEngComm, 2012, 14, 6503.	1.3	89
64	Phase Behavior of Ritonavir Amorphous Solid Dispersions during Hydration and Dissolution. Pharmaceutical Research, 2017, 34, 2842-2861.	1.7	85
65	Effect of polymers on nucleation and crystal growth of amorphous acetaminophen. CrystEngComm, 2012, 14, 5188.	1.3	83
66	Deliquescence Lowering in Food Ingredient Mixtures. Journal of Food Science, 2006, 71, E10.	1.5	82
67	Role of Viscosity in Influencing the Glass-Forming Ability of Organic Molecules from the Undercooled Melt State. Pharmaceutical Research, 2012, 29, 271-284.	1.7	82
68	Curcumin amorphous solid dispersions: the influence of intra and intermolecular bonding on physical stability. Pharmaceutical Development and Technology, 2014, 19, 976-986.	1.1	82
69	Phase Separation Kinetics in Amorphous Solid Dispersions Upon Exposure to Water. Molecular Pharmaceutics, 2015, 12, 1623-1635.	2.3	80
70	Nanoscale Mid-Infrared Imaging of Phase Separation in a Drug–Polymer Blend. Journal of Pharmaceutical Sciences, 2012, 101, 2066-2073.	1.6	79
71	Application of mid-IR spectroscopy for the characterization of pharmaceutical systems. International Journal of Pharmaceutics, 2011, 417, 3-16.	2.6	77
72	Characterization of the Phase Transitions of Trehalose Dihydrate on Heating and Subsequent Dehydration. Journal of Pharmaceutical Sciences, 1998, 87, 347-355.	1.6	76

#	Article	IF	CITATIONS
73	Influence of Additives on the Properties of Nanodroplets Formed in Highly Supersaturated Aqueous Solutions of Ritonavir. Molecular Pharmaceutics, 2013, 10, 3392-3403.	2.3	76
74	Airborne Chemistry Coupled to Raman Spectroscopy. Analytical Chemistry, 2003, 75, 2177-2180.	3.2	73
75	Nanoscale Infrared, Thermal, and Mechanical Characterization of Telaprevir–Polymer Miscibility in Amorphous Solid Dispersions Prepared by Solvent Evaporation. Molecular Pharmaceutics, 2016, 13, 1123-1136.	2.3	73
76	Congruent Release of Drug and Polymer from Amorphous Solid Dispersions: Insights into the Role of Drug-Polymer Hydrogen Bonding, Surface Crystallization, and Glass Transition. Molecular Pharmaceutics, 2020, 17, 1261-1275.	2.3	73
77	Physical stability of crystal hydrates and their anhydrates in the presence of excipients. Journal of Pharmaceutical Sciences, 2006, 95, 446-461.	1.6	72
78	Toward an Understanding of the Factors Influencing Anhydrate-to-Hydrate Transformation Kinetics in Aqueous Environments. Crystal Growth and Design, 2008, 8, 2684-2693.	1.4	72
79	Classification of the Crystallization Behavior of Amorphous Active Pharmaceutical Ingredients in Aqueous Environments. Pharmaceutical Research, 2014, 31, 969-982.	1.7	71
80	Trends in the Precipitation and Crystallization Behavior of Supersaturated Aqueous Solutions of Poorly Water-Soluble Drugs Assessed Using Synchrotron Radiation. Journal of Pharmaceutical Sciences, 2015, 104, 1981-1992.	1.6	71
81	Supersaturation Potential of Salt, Co-Crystal, and Amorphous Forms of a Model Weak Base. Crystal Growth and Design, 2016, 16, 737-748.	1.4	70
82	Bile Salts as Crystallization Inhibitors of Supersaturated Solutions of Poorly Water-Soluble Compounds. Crystal Growth and Design, 2015, 15, 2593-2597.	1.4	69
83	Solid-State Spectroscopic Investigation of Molecular Interactions between Clofazimine and Hypromellose Phthalate in Amorphous Solid Dispersions. Molecular Pharmaceutics, 2016, 13, 3964-3975.	2.3	69
84	Improved Understanding of Factors Contributing to Quantification of Anhydrate/Hydrate Powder Mixtures. Applied Spectroscopy, 2005, 59, 942-951.	1.2	68
85	Selective Detection and Quantitation of Organic Molecule Crystallization by Second Harmonic Generation Microscopy. Analytical Chemistry, 2010, 82, 5425-5432.	3.2	68
86	Influence of Particle Size on the Ultraviolet Spectrum of Particulate-Containing Solutions: Implications for In-Situ Concentration Monitoring Using UV/Vis Fiber-Optic Probes. Pharmaceutical Research, 2011, 28, 1643-1652.	1.7	68
87	Insights into the Dissolution Behavior of Ledipasvir–Copovidone Amorphous Solid Dispersions: Role of Drug Loading and Intermolecular Interactions. Molecular Pharmaceutics, 2019, 16, 5054-5067.	2.3	68
88	The role of polymers in oral bioavailability enhancement; a review. Polymer, 2015, 77, 399-415.	1.8	67
89	The application of temperature-composition phase diagrams for hot melt extrusion processing of amorphous solid dispersions to prevent residual crystallinity. International Journal of Pharmaceutics, 2018, 553, 454-466.	2.6	67
90	Effects of the Molecular Weight and Concentration of Polymer Additives, and Temperature on the Melt Crystallization Kinetics of a Small Drug Molecule. Crystal Growth and Design, 2010, 10, 3585-3595.	1.4	66

#	Article	IF	CITATIONS
91	Color and chemical stability of tea polyphenol (â^')-epigallocatechin-3-gallate in solution and solid states. Food Research International, 2013, 53, 909-921.	2.9	66
92	Impact of surfactants on the crystal growth of amorphous celecoxib. International Journal of Pharmaceutics, 2014, 461, 251-257.	2.6	66
93	Deliquescence in Binary Mixtures. Pharmaceutical Research, 2005, 22, 318-324.	1.7	65
94	Effect of Binary Additive Combinations on Solution Crystal Growth of the Poorly Water-Soluble Drug, Ritonavir. Crystal Growth and Design, 2012, 12, 6050-6060.	1.4	65
95	Stability and solubility enhancement of ellagic acid in cellulose ester solid dispersions. Carbohydrate Polymers, 2013, 92, 1443-1450.	5.1	65
96	Comparison of Sampling Techniques for In-Line Monitoring Using Raman Spectroscopy. Applied Spectroscopy, 2005, 59, 934-941.	1.2	64
97	Effects of anticaking agents and storage conditions on the moisture sorption, caking, and flowability of deliquescent ingredients. Food Research International, 2012, 45, 369-380.	2.9	64
98	Dropwise Additive Manufacturing of Pharmaceutical Products for Solvent-Based Dosage Forms. Journal of Pharmaceutical Sciences, 2014, 103, 496-506.	1.6	64
99	Investigating the Correlation between Miscibility and Physical Stability of Amorphous Solid Dispersions Using Fluorescence-Based Techniques. Molecular Pharmaceutics, 2016, 13, 3988-4000.	2.3	64
100	An ab initio polymer selection methodology to prevent crystallization in amorphous solid dispersions by application of crystal engineering principles. CrystEngComm, 2011, 13, 6171.	1.3	63
101	The effect of temperature on hydrogen bonding in crystalline and amorphous phases in dihydropyrine calcium channel blockers. Pharmaceutical Research, 2002, 19, 484-490.	1.7	62
102	Nanoscale Mid-Infrared Evaluation of the Miscibility Behavior of Blends of Dextran or Maltodextrin with Poly(vinylpyrrolidone). Molecular Pharmaceutics, 2012, 9, 1459-1469.	2.3	62
103	Thermodynamics of Highly Supersaturated Aqueous Solutions of Poorly Water-Soluble Drugs—Impact of a Second Drug on the Solution Phase Behavior and Implications for Combination Products. Journal of Pharmaceutical Sciences, 2015, 104, 2583-2593.	1.6	62
104	Dropwise Additive Manufacturing of Pharmaceutical Products for Melt-Based Dosage Forms. Journal of Pharmaceutical Sciences, 2015, 104, 1641-1649.	1.6	62
105	Miscibility of Itraconazole–Hydroxypropyl Methylcellulose Blends: Insights with High Resolution Analytical Methodologies. Molecular Pharmaceutics, 2015, 12, 4542-4553.	2.3	62
106	Impact of Polymer Conformation on the Crystal Growth Inhibition of a Poorly Water-Soluble Drug in Aqueous Solution. Langmuir, 2015, 31, 171-179.	1.6	59
107	Acoustic levitation: recent developments and emerging opportunities in biomaterials research. European Biophysics Journal, 2012, 41, 397-403.	1.2	58
108	Effect of Temperature and Moisture on the Physical Stability of Binary and Ternary Amorphous Solid Dispersions of Celecoxib. Journal of Pharmaceutical Sciences, 2017, 106, 100-110.	1.6	58

#	Article	IF	CITATIONS
109	Impact of Polymers on the Precipitation Behavior of Highly Supersaturated Aqueous Danazol Solutions. Molecular Pharmaceutics, 2014, 11, 3027-3038.	2.3	57
110	Application of Partial Least-Squares (PLS) modeling in quantifying drug crystallinity in amorphous solid dispersions. International Journal of Pharmaceutics, 2010, 398, 155-160.	2.6	55
111	Effects of storage conditions, formulation, and particle size on moisture sorption and flowability of powders: A study of deliquescent ingredient blends. Food Research International, 2012, 49, 783-791.	2.9	55
112	Deliquescence of pharmaceutical systems. Pharmaceutical Development and Technology, 2010, 15, 582-594.	1.1	54
113	Pairwise Polymer Blends for Oral Drug Delivery. Journal of Pharmaceutical Sciences, 2014, 103, 2871-2883.	1.6	54
114	Investigating the Interaction Pattern and Structural Elements of a Drug–Polymer Complex at the Molecular Level. Molecular Pharmaceutics, 2015, 12, 2459-2468.	2.3	54
115	Investigating the Impact of Drug Crystallinity in Amorphous Tacrolimus Capsules on Pharmacokinetics and Bioequivalence Using Discriminatory InAVitro Dissolution Testing and Physiologically Based Pharmacokinetic Modeling and Simulation. Journal of Pharmaceutical Sciences, 2018, 107, 1330-1341.	1.6	53
116	Effect of particle size and temperature on the dehydration kinetics of trehalose dihydrate. International Journal of Pharmaceutics, 1998, 167, 215-221.	2.6	52
117	Influence of Polymer and Drug Loading on the Release Profile and Membrane Transport of Telaprevir. Molecular Pharmaceutics, 2018, 15, 1700-1713.	2.3	52
118	Impact of Polymers on the Crystallization and Phase Transition Kinetics of Amorphous Nifedipine during Dissolution in Aqueous Media. Molecular Pharmaceutics, 2014, 11, 3565-3576.	2.3	51
119	Improved Release of Celecoxib from High Drug Loading Amorphous Solid Dispersions Formulated with Polyacrylic Acid and Cellulose Derivatives. Molecular Pharmaceutics, 2016, 13, 873-884.	2.3	51
120	Impact of Micellar Surfactant on Supersaturation and Insight into Solubilization Mechanisms in Supersaturated Solutions of Atazanavir. Pharmaceutical Research, 2017, 34, 1276-1295.	1.7	51
121	Patterns of drug release as a function of drug loading from amorphous solid dispersions: A comparison of five different polymers European Journal of Pharmaceutical Sciences, 2020, 155, 105514.	1.9	51
122	Factors Influencing Crystal Growth Rates from Undercooled Liquids of Pharmaceutical Compounds. Journal of Physical Chemistry B, 2014, 118, 9974-9982.	1.2	50
123	Synthesis and structure–property evaluation of cellulose ï‰-carboxyesters for amorphous solid dispersions. Carbohydrate Polymers, 2014, 100, 116-125.	5.1	50
124	Polymer Inhibition of Crystal Growth by Surface Poisoning. Crystal Growth and Design, 2016, 16, 2094-2103.	1.4	49
125	Insights into Nano- and Micron-Scale Phase Separation in Amorphous Solid Dispersions Using Fluorescence-Based Techniques in Combination with Solid State Nuclear Magnetic Resonance Spectroscopy. Pharmaceutical Research, 2017, 34, 1364-1377.	1.7	49
126	Analysis of the Effect of Particle Size on Polymorphic Quantitation by Raman Spectroscopy. Applied Spectroscopy, 2006, 60, 977-984.	1.2	48

#	Article	IF	CITATIONS
127	Manipulating Theophylline Monohydrate Formation During High-Shear Wet Granulation Through Improved Understanding of the Role of Pharmaceutical Excipients. Pharmaceutical Research, 2008, 25, 923-935.	1.7	48
128	Analysis of Relationships Between Solid-State Properties, Counterion, and Developability of Pharmaceutical Salts. AAPS PharmSciTech, 2010, 11, 1212-1222.	1.5	48
129	Molecular Conformation and Crystallization: The Case of Ethenzamide. Crystal Growth and Design, 2012, 12, 6110-6117.	1.4	48
130	Salt Stability – The Effect of pHmax on Salt to Free Base Conversion. Pharmaceutical Research, 2015, 32, 3110-3118.	1.7	48
131	Influence of Polymers on the Crystal Growth Rate of Felodipine: Correlating Adsorbed Polymer Surface Coverage to Solution Crystal Growth Inhibition. Langmuir, 2015, 31, 11279-11287.	1.6	48
132	Origin of Nanodroplet Formation Upon Dissolution of an Amorphous Solid Dispersion: A Mechanistic Isotope Scrambling Study. Journal of Pharmaceutical Sciences, 2017, 106, 1998-2008.	1.6	48
133	Influence of alkali metal counterions on the glass transition temperature of amorphous indomethacin salts. Pharmaceutical Research, 2002, 19, 649-654.	1.7	46
134	Influence of polymeric excipients on crystal hydrate formation kinetics in aqueous slurries. Journal of Pharmaceutical Sciences, 2008, 97, 5198-5211.	1.6	46
135	Impact of Counterion on the Chemical Stability of Crystalline Salts of Procaine. Journal of Pharmaceutical Sciences, 2010, 99, 3719-3730.	1.6	46
136	Impact of Eudragit EPO and hydroxypropyl methylcellulose on drug release rate, supersaturation, precipitation outcome and redissolution rate of indomethacin amorphous solid dispersions. International Journal of Pharmaceutics, 2017, 531, 313-323.	2.6	46
137	Drug Release and Nanodroplet Formation from Amorphous Solid Dispersions: Insight into the Roles of Drug Physicochemical Properties and Polymer Selection. Molecular Pharmaceutics, 2021, 18, 2066-2081.	2.3	46
138	Evaluation of the Microstructure of Semicrystalline Solid Dispersions. Molecular Pharmaceutics, 2010, 7, 1291-1300.	2.3	45
139	A Comparison of the Crystallization Inhibition Properties of Bile Salts. Crystal Growth and Design, 2016, 16, 7286-7300.	1.4	45
140	Estimation of the transition temperature for an enantiotropic polymorphic system from the transformation kinetics monitored using Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45, 546-551.	1.4	44
141	Influence of polymer chemistry on crystal growth inhibition of two chemically diverse organic molecules. CrystEngComm, 2011, 13, 6712.	1.3	44
142	Mechanistic Design of Chemically Diverse Polymers with Applications in Oral Drug Delivery. Biomacromolecules, 2016, 17, 3659-3671.	2.6	44
143	Impact of Deliquescence on the Chemical Stability of Vitamins B ₁ , B ₆ , and C in Powder Blends. Journal of Agricultural and Food Chemistry, 2008, 56, 6471-6479.	2.4	43
144	Effect of Additives on Crystal Growth and Nucleation of Amorphous Flutamide. Crystal Growth and Design, 2012, 12, 3221-3230.	1.4	43

#	Article	IF	CITATIONS
145	Nonlinear Optical Imaging for Sensitive Detection of Crystals in Bulk Amorphous Powders. Journal of Pharmaceutical Sciences, 2012, 101, 4201-4213.	1.6	43
146	Interplay of Degradation, Dissolution and Stabilization of Clarithromycin and Its Amorphous Solid Dispersions. Molecular Pharmaceutics, 2013, 10, 4640-4653.	2.3	43
147	Compromised in vitro dissolution and membrane transport of multidrug amorphous formulations. Journal of Controlled Release, 2016, 229, 172-182.	4.8	43
148	Amorphous solid dispersions containing residual crystallinity: Influence of seed properties and polymer adsorption on dissolution performance. European Journal of Pharmaceutical Sciences, 2020, 146, 105276.	1.9	43
149	Interaction of Environmental Moisture with Powdered Green Tea Formulations: Effect on Catechin Chemical Stability. Journal of Agricultural and Food Chemistry, 2008, 56, 4068-4077.	2.4	42
150	Effect of Substrates on Naproxen-Polyvinylpyrrolidone Solid Dispersions Formed via the Drop Printing Technique. Journal of Pharmaceutical Sciences, 2013, 102, 638-648.	1.6	41
151	Characterization of Supersaturated Danazol Solutions – Impact of Polymers on Solution Properties and Phase Transitions. Pharmaceutical Research, 2016, 33, 1276-1288.	1.7	41
152	Analytical approaches to investigate salt disproportionation in tablet matrices by Raman spectroscopy and Raman mapping. Journal of Pharmaceutical and Biomedical Analysis, 2016, 118, 328-337.	1.4	41
153	Surface area normalized dissolution to study differences in itraconazole-copovidone solid dispersions prepared by spray-drying and hot melt extrusion. International Journal of Pharmaceutics, 2018, 540, 106-119.	2.6	41
154	Balancing Solid-State Stability and Dissolution Performance of Lumefantrine Amorphous Solid Dispersions: The Role of Polymer Choice and Drug–Polymer Interactions. Molecular Pharmaceutics, 2022, 19, 392-413.	2.3	41
155	Role of Deliquescence Lowering in Enhancing Chemical Reactivity in Physical Mixtures. Journal of Physical Chemistry B, 2006, 110, 10190-10196.	1.2	40
156	Influence of Simultaneous Variations in Temperature and Relative Humidity on Chemical Stability of Two Vitamin C Forms and Implications for Shelf Life Models. Journal of Agricultural and Food Chemistry, 2010, 58, 3532-3540.	2.4	40
157	Dissolution performance of binary amorphous drug combinations—Impact of a second drug on the maximum achievable supersaturation. International Journal of Pharmaceutics, 2015, 496, 282-290.	2.6	40
158	Using Environment-Sensitive Fluorescent Probes to Characterize Liquid-Liquid Phase Separation in Supersaturated Solutions of Poorly Water Soluble Compounds. Pharmaceutical Research, 2015, 32, 3660-3673.	1.7	40
159	Interplay of Supersaturation and Solubilization: Lack of Correlation between Concentration-Based Supersaturation Measurements and Membrane Transport Rates in Simulated and Aspirated Human Fluids. Molecular Pharmaceutics, 2019, 16, 5042-5053.	2.3	40
160	Infrared imaging of laser-induced heating during Raman spectroscopy of pharmaceutical solids. Journal of Pharmaceutical and Biomedical Analysis, 2002, 30, 1223-1231.	1.4	38
161	Water dynamics in channel hydrates investigated using H/D exchange. International Journal of Pharmaceutics, 2002, 241, 253-261.	2.6	38
162	On-Line Content Uniformity Determination of Tablets Using Low-Resolution Raman Spectroscopy. Applied Spectroscopy, 2006, 60, 672-681.	1.2	38

#	Article	IF	CITATIONS
163	Modification of Crystallization Behavior in Drug/Polyethylene Glycol Solid Dispersions. Molecular Pharmaceutics, 2012, 9, 546-553.	2.3	38
164	Analysis of counterfeit Cialis® tablets using Raman microscopy and multivariate curve resolution. Journal of Pharmaceutical and Biomedical Analysis, 2012, 66, 126-135.	1.4	38
165	Crystallization and Dissolution Behavior of Naproxen/Polyethylene Glycol Solid Dispersions. Journal of Physical Chemistry B, 2013, 117, 1494-1500.	1.2	38
166	Mid-infrared spectroscopy as a polymer selection tool for formulating amorphous solid dispersions. Journal of Pharmacy and Pharmacology, 2014, 66, 244-255.	1.2	38
167	Amphiphilic hydroxyalkyl cellulose derivatives for amorphous solid dispersion prepared by olefin cross-metathesis. Polymer Chemistry, 2016, 7, 4953-4963.	1.9	38
168	Understanding the Impact of Water on the Miscibility and Microstructure of Amorphous Solid Dispersions: An AFM–LCR and TEM–EDX Study. Molecular Pharmaceutics, 2017, 14, 1691-1705.	2.3	38
169	Analysis of the moisture sorption behavior of amorphous drug–polymer blends. Journal of Applied Polymer Science, 2010, 117, 1055-1063.	1.3	37
170	Single Particle Nonlinear Optical Imaging of Trace Crystallinity in an Organic Powder. Analytical Chemistry, 2011, 83, 4745-4751.	3.2	37
171	Water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) amorphous solid dispersions: Insights with confocal fluorescence microscopy. International Journal of Pharmaceutics, 2017, 529, 654-666.	2.6	37
172	Novel cellulose-based amorphous solid dispersions enhance quercetin solution concentrations in vitro. Carbohydrate Polymers, 2017, 157, 86-93.	5.1	37
173	Paclitaxel Crystal Seeds with Different Intrinsic Properties and Their Impact on Dissolution of Paclitaxel-HPMCAS Amorphous Solid Dispersions. Crystal Growth and Design, 2018, 18, 1548-1559.	1.4	37
174	Polymer Type Impacts Amorphous Solubility and Drug-Rich Phase Colloidal Stability: A Mechanistic Study Using Nuclear Magnetic Resonance Spectroscopy. Molecular Pharmaceutics, 2020, 17, 1352-1362.	2.3	37
175	Selective Imaging of Active Pharmaceutical Ingredients in Powdered Blends with Common Excipients Utilizing Two-Photon Excited Ultraviolet-Fluorescence and Ultraviolet-Second Order Nonlinear Optical Imaging of Chiral Crystals. Analytical Chemistry, 2012, 84, 5869-5875.	3.2	36
176	Supersaturation Potential of Ordered Mesoporous Silica Delivery Systems. Part 1: Dissolution Performance and Drug Membrane Transport Rates. Molecular Pharmaceutics, 2018, 15, 3489-3501.	2.3	36
177	Effects of drying method and excipient on the structure and physical stability of protein solids: Freeze drying vs. spray freeze drying. International Journal of Pharmaceutics, 2021, 594, 120169.	2.6	36
178	Crystallization from Supersaturated Solutions: Role of Lecithin and Composite Simulated Intestinal Fluid. Pharmaceutical Research, 2018, 35, 158.	1.7	35
179	Sucrose reduces the efficiency of protein denaturation by a chaotropic agent. BBA - Proteins and Proteomics, 1995, 1253, 39-46.	2.1	34
180	Finding the Needle in the Haystack: Characterization of Trace Crystallinity in a Commercial Formulation of Paclitaxel Protein-Bound Particles by Raman Spectroscopy Enabled by Second Harmonic Generation Microscopy. Molecular Pharmaceutics, 2015, 12, 2378-2383.	2.3	34

#	Article	IF	CITATIONS
181	Dropwise additive manufacturing of pharmaceutical products for amorphous and self emulsifying drug delivery systems. International Journal of Pharmaceutics, 2017, 524, 424-432.	2.6	34
182	Amorphous solid dispersions of enzalutamide and novel polysaccharide derivatives: investigation of relationships between polymer structure and performance. Scientific Reports, 2020, 10, 18535.	1.6	34
183	Manipulating Hydrate Formation During High Shear Wet Granulation Using Polymeric Excipients. Journal of Pharmaceutical Sciences, 2009, 98, 4670-4683.	1.6	33
184	Evaluation of the Crystal Growth Rate of Felodipine Polymorphs in the Presence and Absence of Additives As a Function of Temperature. Crystal Growth and Design, 2013, 13, 4349-4354.	1.4	33
185	Atomic Force Microscope Infrared Spectroscopy of Griseofulvin Nanocrystals. Analytical Chemistry, 2013, 85, 11449-11455.	3.2	33
186	Stability and solution concentration enhancement of resveratrol by solid dispersion in cellulose derivative matrices. Cellulose, 2013, 20, 1249-1260.	2.4	33
187	Quantitative analysis of the inhibitory effect of HPMC on felodipine crystallization kinetics using population balance modeling. CrystEngComm, 2013, 15, 2197-2205.	1.3	33
188	Effect of Temperature on the Deliquescence Properties of Food Ingredients and Blends. Journal of Agricultural and Food Chemistry, 2013, 61, 9241-9250.	2.4	33
189	Absorptive Dissolution Testing of Supersaturating Systems: Impact of Absorptive Sink Conditions on Solution Phase Behavior and Mass Transport. Molecular Pharmaceutics, 2017, 14, 4052-4063.	2.3	33
190	Insight into Amorphous Solid Dispersion Performance by Coupled Dissolution and Membrane Mass Transfer Measurements. Molecular Pharmaceutics, 2019, 16, 448-461.	2.3	33
191	Water-Induced Phase Separation of Spray-Dried Amorphous Solid Dispersions. Molecular Pharmaceutics, 2020, 17, 4004-4017.	2.3	33
192	Deliquescence-Induced Caking in Binary Powder Blends. Pharmaceutical Development and Technology, 2006, 11, 453-464.	1.1	32
193	Disproportionation of the calcium salt of atorvastatin in the presence of acidic excipients. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 410-416.	2.0	32
194	Exploring the Role of Surfactants in Enhancing Drug Release from Amorphous Solid Dispersions at Higher Drug Loadings. Pharmaceutics, 2021, 13, 735.	2.0	32
195	Particle size dependent molecular rearrangements during the dehydration of trehalose dihydrate in situ FT-Raman spectroscopy. Pharmaceutical Research, 1998, 15, 1207-1214.	1.7	31
196	Effects of Anticaking Agents and Relative Humidity on the Physical and Chemical Stability of Powdered Vitamin C. Journal of Food Science, 2011, 76, C1062-74.	1.5	31
197	Maintaining Supersaturation of Active Pharmaceutical Ingredient Solutions with Biologically Relevant Bile Salts. Crystal Growth and Design, 2017, 17, 2782-2791.	1.4	31
198	Application and limitations of thermogravimetric analysis to delineate the hot melt extrusion chemical stability processing window. International Journal of Pharmaceutics, 2020, 590, 119916.	2.6	31

#	Article	IF	CITATIONS
199	Hyphenation of Raman spectroscopy with gravimetric analysis to interrogate water–solid interactions in pharmaceutical systems. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 14-23.	1.4	30
200	An Investigation into the Influence of Counterion on the Properties of Some Amorphous Organic Salts. Molecular Pharmaceutics, 2008, 5, 946-955.	2.3	30
201	Salt Stability - Effect of Particle Size, Relative Humidity, Temperature and Composition on Salt to Free Base Conversion. Pharmaceutical Research, 2015, 32, 549-561.	1.7	30
202	Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis. Biomacromolecules, 2016, 17, 454-465.	2.6	30
203	Analysis of the packaging enclosing a counterfeit pharmaceutical tablet using Raman microscopy and two-dimensional correlation spectroscopy. Vibrational Spectroscopy, 2012, 61, 176-182.	1.2	29
204	Rapid classification of pharmaceutical ingredients with Raman spectroscopy using compressive detection strategy with PLS-DA multivariate filters. Journal of Pharmaceutical and Biomedical Analysis, 2013, 80, 63-68.	1.4	29
205	Influence of particle size on the crystallization kinetics of amorphous felodipine powders. Powder Technology, 2013, 236, 197-204.	2.1	29
206	Evaluation of the Crystallization Tendency of Commercially Available Amorphous Tacrolimus Formulations Exposed to Different Stress Conditions. Pharmaceutical Research, 2017, 34, 2142-2155.	1.7	29
207	Impact of Hypromellose Acetate Succinate Grade on Drug Amorphous Solubility and InÂVitro Membrane Transport. Journal of Pharmaceutical Sciences, 2020, 109, 2464-2473.	1.6	29
208	Atomic force microscopy analysis and confocal Raman microimaging of coated pellets. International Journal of Pharmaceutics, 2003, 267, 35-47.	2.6	28
209	Impact of Endogenous Bile Salts on the Thermodynamics of Supersaturated Active Pharmaceutical Ingredient Solutions. Crystal Growth and Design, 2017, 17, 1264-1275.	1.4	28
210	Partitioning of surfactant into drug-rich nanodroplets and its impact on drug thermodynamic activity and droplet size. Journal of Controlled Release, 2021, 330, 229-243.	4.8	28
211	Effect of Small Levels of Impurities on the Water Vapor Sorption Behavior of Ranitidine HCl. Pharmaceutical Research, 2006, 24, 147-156.	1.7	27
212	Evaluation and modeling of the eutectic composition of various drug-polyethylene glycol solid dispersions. Pharmaceutical Development and Technology, 2011, 16, 201-211.	1.1	27
213	Evaluating the influence of polymers on nucleation and growth in supersaturated solutions of acetaminophen. CrystEngComm, 2015, 17, 1242-1248.	1.3	27
214	Impact of Metallic Stearates on Disproportionation of Hydrochloride Salts of Weak Bases in Solid-State Formulations. Molecular Pharmaceutics, 2016, 13, 3541-3552.	2.3	27
215	Non-Sink Dissolution Behavior and Solubility Limit of Commercial Tacrolimus Amorphous Formulations. Journal of Pharmaceutical Sciences, 2017, 106, 264-272.	1.6	27
216	Evidence for Halogen Bonding in Amorphous Solid Dispersions. Crystal Growth and Design, 2020, 20, 3224-3235.	1.4	27

#	Article	IF	CITATIONS
217	Fluorescence-Detected Mid-Infrared Photothermal Microscopy. Journal of the American Chemical Society, 2021, 143, 10809-10815.	6.6	27
218	Impact of Polymers on the Melt Crystal Growth Rate of Indomethacin Polymorphs. Crystal Growth and Design, 2017, 17, 6467-6476.	1.4	26
219	Chemical stability and reaction kinetics of two thiamine salts (thiamine mononitrate and thiamine) Tj ETQq1 1 0.	784314 rg 2.9	gBT_/Overlo <mark>ck</mark>
220	Characterization of Phase Transformations for Amorphous Solid Dispersions of a Weakly Basic Drug upon Dissolution in Biorelevant Media. Pharmaceutical Research, 2019, 36, 174.	1.7	26
221	Amorphous Solid Dispersions Containing Residual Crystallinity: Competition Between Dissolution and Matrix Crystallization. AAPS Journal, 2021, 23, 69.	2.2	26
222	Physical Stability and Dissolution of Lumefantrine Amorphous Solid Dispersions Produced by Spray Anti-Solvent Precipitation. Journal of Pharmaceutical Sciences, 2020, 110, 2423-2431.	1.6	26
223	Water Diffusion in Hydrated Crystalline and Amorphous Sugars Monitored Using H/D Exchange. Journal of Pharmaceutical Sciences, 2002, 91, 690-698.	1.6	25
224	Kinetics of Moisture-Induced Hydrolysis in Powder Blends Stored at and below the Deliquescence Relative Humidity: Investigation of Sucroseâ~Citric Acid Mixtures. Journal of Agricultural and Food Chemistry, 2010, 58, 11716-11724.	2.4	25
225	Assessing the Impact of Polymers on the pHâ€Induced Precipitation Behavior of Poorly Water Soluble Compounds using Synchrotron Wide Angle Xâ€Ray Scattering. Journal of Pharmaceutical Sciences, 2014, 103, 2724-2735.	1.6	25
226	Tandem modification of amphiphilic cellulose ethers for amorphous solid dispersion via olefin cross-metathesis and thiol-Michael addition. Polymer Chemistry, 2017, 8, 3129-3139.	1.9	25
227	Impact of Bile Salts on Solution Crystal Growth Rate and Residual Supersaturation of an Active Pharmaceutical Ingredient. Crystal Growth and Design, 2017, 17, 3528-3537.	1.4	25
228	Multidrug, Anti-HIV Amorphous Solid Dispersions: Nature and Mechanisms of Impacts of Drugs on Each Other's Solution Concentrations. Molecular Pharmaceutics, 2017, 14, 3617-3627.	2.3	25
229	Rifampin Stability and Solution Concentration Enhancement Through Amorphous Solid Dispersion in Cellulose ï‰-Carboxyalkanoate Matrices. Journal of Pharmaceutical Sciences, 2018, 107, 127-138.	1.6	25
230	Spectroscopic Characterization of Intermolecular Interactions in Solution and Their Influence on Crystallization Outcome. Crystal Growth and Design, 2007, 7, 633-638.	1.4	24
231	Time-Resolved SAXS/WAXS Study of the Phase Behavior and Microstructural Evolution of Drug/PEG Solid Dispersions. Molecular Pharmaceutics, 2011, 8, 932-939.	2.3	24
232	Enhancement of naringenin solution concentration by solid dispersion in cellulose derivative matrices. Cellulose, 2013, 20, 2137-2149.	2.4	24
233	Water–solid interactions between amorphous maltodextrins and crystalline sodium chloride. Food Chemistry, 2014, 144, 26-35.	4.2	24
234	Phase Behavior of Resveratrol Solid Dispersions Upon Addition to Aqueous media. Pharmaceutical Research, 2015, 32, 3324-3337.	1.7	24

#	Article	IF	CITATIONS
235	Insights into Water-Induced Phase Separation in Itraconazole–Hydroxypropylmethyl Cellulose Spin Coated and Spray Dried Dispersions. Molecular Pharmaceutics, 2017, 14, 4387-4402.	2.3	24
236	Qualitative and Quantitative Characterization of Composition Heterogeneity on the Surface of Spray Dried Amorphous Solid Dispersion Particles by an Advanced Surface Analysis Platform with High Surface Sensitivity and Superior Spatial Resolution. Molecular Pharmaceutics, 2018, 15, 2045-2053.	2.3	24
237	Application of an adsorption isotherm to explain incomplete drug release from ordered mesoporous silica materials under supersaturating conditions. Journal of Controlled Release, 2019, 307, 186-199.	4.8	24
238	Understanding the Impact of Protein–Excipient Interactions on Physical Stability of Spray-Dried Protein Solids. Molecular Pharmaceutics, 2021, 18, 2657-2668.	2.3	24
239	Physical stability of l -ascorbic acid amorphous solid dispersions in different polymers: A study of polymer crystallization inhibitor properties. Food Research International, 2015, 76, 867-877.	2.9	23
240	Evaluation of Pazopanib Phase Behavior Following pH-Induced Supersaturation. Molecular Pharmaceutics, 2018, 15, 1690-1699.	2.3	23
241	Effects of Moisture on the Growth Rate of Felodipine Crystals in the Presence and Absence of Polymers. Crystal Growth and Design, 2010, 10, 747-753.	1.4	22
242	Second harmonic generation microscopy as a tool for the early detection of crystallization in spray dried dispersions. Journal of Pharmaceutical and Biomedical Analysis, 2017, 146, 86-95.	1.4	22
243	Assessing the Impact of Endogenously Derived Crystalline Drug on the in Vivo Performance of Amorphous Formulations. Molecular Pharmaceutics, 2019, 16, 3617-3625.	2.3	22
244	Interaction of Environmental Moisture with Powdered Green Tea Formulations: Relationship between Catechin Stability and Moisture-Induced Phase Transformations. Journal of Agricultural and Food Chemistry, 2009, 57, 4691-4697.	2.4	21
245	Variation in Supersaturation and Phase Behavior of Ezetimibe Amorphous Solid Dispersions upon Dissolution in Different Biorelevant Media. Molecular Pharmaceutics, 2018, 15, 193-206.	2.3	21
246	Impact of Drug–Polymer Intermolecular Interactions on Dissolution Performance of Copovidone-Based Amorphous Solid Dispersions. Molecular Pharmaceutics, 2021, 18, 3496-3508.	2.3	21
247	Spontaneous Crystallinity Loss of Drugs in the Disordered Regions of Poly(Ethylene Oxide) in the Presence of Water. Journal of Pharmaceutical Sciences, 2008, 97, 3182-3194.	1.6	20
248	Phase Behavior of Ranitidine HCl in the Presence of Degradants and Atmospheric MoistureImpact on Chemical Stability. Langmuir, 2008, 24, 3850-3856.	1.6	20
249	Crystalline solid dispersion-a strategy to slowdown salt disproportionation in solid state formulations during storage and wet granulation. International Journal of Pharmaceutics, 2017, 517, 203-215.	2.6	20
250	Mechanistic understanding of the phase behavior of supersaturated solutions of poorly water-soluble drugs. International Journal of Pharmaceutics, 2018, 543, 29-37.	2.6	20
251	Nanometer-Scale Residual Crystals in a Hot Melt Extruded Amorphous Solid Dispersion: Characterization by Transmission Electron Microscopy. Crystal Growth and Design, 2018, 18, 7633-7640.	1.4	20
252	Crystallization Inhibition Properties of Cellulose Esters and Ethers for a Group of Chemically Diverse Drugs: Experimental and Computational Insight. Biomacromolecules, 2018, 19, 4593-4606.	2.6	20

#	Article	IF	CITATIONS
253	Crystals and Crystallization in Drug Delivery Design. Crystal Growth and Design, 2021, 21, 1375-1377.	1.4	20
254	Determination of hydrate transition temperature using transformation kinetics obtained by Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49, 247-252.	1.4	19
255	Impact of sertraline salt form on the oxidative stability in powder blends. International Journal of Pharmaceutics, 2014, 461, 322-330.	2.6	19
256	Common-ion effects on the deliquescence lowering of crystalline ingredient blends. Food Chemistry, 2016, 195, 2-10.	4.2	19
257	Influence of Drug–Silica Electrostatic Interactions on Drug Release from Mesoporous Silica-Based Oral Delivery Systems. Molecular Pharmaceutics, 2020, 17, 3435-3446.	2.3	19
258	Deliquescence Behavior and Chemical Stability of Vitamin C Forms (Ascorbic Acid, Sodium Ascorbate,) Tj ETQqO	0	Overlock 10 Ti
259	Amorphous solid dispersion formation via solvent granulation – A case study with ritonavir and lopinavir. International Journal of Pharmaceutics: X, 2019, 1, 100035.	1.2	18
260	Microstructure Formation for Improved Dissolution Performance of Lopinavir Amorphous Solid Dispersions. Molecular Pharmaceutics, 2019, 16, 1751-1765.	2.3	18
261	Inhalable Nanocomposite Microparticles with Enhanced Dissolution and Superior Aerosol Performance. Molecular Pharmaceutics, 2020, 17, 3270-3280.	2.3	18
262	InÂVitro Biopredictive Methods: A Workshop Summary Report. Journal of Pharmaceutical Sciences, 2021, 110, 567-583.	1.6	18
263	Role of Surfactants on Release Performance of Amorphous Solid Dispersions of Ritonavir and Copovidone. Pharmaceutical Research, 2022, 39, 381-397.	1.7	18
264	Rapid Insight into Heating-Induced Phase Transformations in the Solid State of the Calcium Salt of Atorvastatin Using Multivariate Data Analysis. Pharmaceutical Research, 2013, 30, 826-835.	1.7	17
265	Water–solid interactions in amorphous maltodextrin-crystalline sucrose binary mixtures. Pharmaceutical Development and Technology, 2014, 19, 247-256.	1.1	17
266	Understanding Crystal Growth Kinetics in the Absence and Presence of a Polymer Using a Rotating Disk Apparatus. Crystal Growth and Design, 2016, 16, 2640-2645.	1.4	17
267	Effect of excipient properties, water activity, and water content on the disproportionation of a pharmaceutical salt. International Journal of Pharmaceutics, 2018, 546, 226-234.	2.6	17
268	Phase Behavior of Drug-Hydroxypropyl Methylcellulose Amorphous Solid Dispersions Produced from Various Solvent Systems: Mechanistic Understanding of the Role of Polymer using Experimental and Theoretical Methods. Molecular Pharmaceutics, 2018, 15, 3236-3251.	2.3	17
269	Dissolution of Indomethacin Crystals into a Polymer Melt: Role of Diffusion and Fragmentation. Crystal Growth and Design, 2019, 19, 3315-3328.	1.4	17
270	Impact of Monomeric versus Micellar Surfactant and Surfactant–Polymer Interactions on Nucleation–Induction Times of Atazanavir from Supersaturated Solutions. Crystal Growth and Design, 2020, 20, 62-72.	1.4	17

#	Article	IF	CITATIONS
271	Physical stability and release properties of lumefantrine amorphous solid dispersion granules prepared by a simple solvent evaporation approach. International Journal of Pharmaceutics: X, 2020, 2, 100052.	1.2	17
272	Effect of Polymer Species on Maximum Aqueous Phase Supersaturation Revealed by Quantitative Nuclear Magnetic Resonance Spectroscopy. Molecular Pharmaceutics, 2021, 18, 1344-1355.	2.3	17
273	Phase behavior and moisture sorption of deliquescent powders. Chemical Engineering Science, 2010, 65, 5639-5650.	1.9	16
274	Ab Initio Prediction of the Diversity of Second Harmonic Generation from Pharmaceutically Relevant Materials. Crystal Growth and Design, 2015, 15, 581-586.	1.4	16
275	Cellulose-based amorphous solid dispersions enhance rifapentine delivery characteristics in vitro. Carbohydrate Polymers, 2018, 182, 149-158.	5.1	16
276	Effect of Temperature and Initial Moisture Content on the Chemical Stability and Color Change of Various Forms of Vitamin C. International Journal of Food Properties, 2015, 18, 862-879.	1.3	15
277	Monitoring the Phase Behavior of Supersaturated Solutions of Poorly Water-Soluble Drugs Using Fluorescence Techniques. Journal of Pharmaceutical Sciences, 2018, 107, 94-102.	1.6	15
278	Absorptive Dissolution Testing: An Improved Approach to Study the Impact of Residual Crystallinity on the Performance of Amorphous Formulations. Journal of Pharmaceutical Sciences, 2020, 109, 1312-1323.	1.6	15
279	Impact of Surfactants on the Performance of Clopidogrel-Copovidone Amorphous Solid Dispersions: Increased Drug Loading and Stabilization of Nanodroplets. Pharmaceutical Research, 2022, 39, 167-188.	1.7	15
280	Molecular Weight Effects on the Miscibility Behavior of Dextran and Maltodextrin with Poly(vinylpyrrolidone). Pharmaceutical Research, 2012, 29, 2754-2765.	1.7	14
281	Vemurafenib: A Tetramorphic System Displaying Concomitant Crystallization from the Supercooled Liquid. Crystal Growth and Design, 2016, 16, 6033-6042.	1.4	14
282	Compositional effect of complex biorelevant media on the crystallization kinetics of an active pharmaceutical ingredient. CrystEngComm, 2017, 19, 4797-4806.	1.3	14
283	Effects of Monoâ€, Diâ€, and Triâ€Saccharides on the Stability and Crystallization of Amorphous Sucrose. Journal of Food Science, 2018, 83, 2827-2839.	1.5	14
284	Combining enabling formulation strategies to generate supersaturated solutions of delamanid: In situ salt formation during amorphous solid dispersion fabrication for more robust release profiles. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 174, 131-143.	2.0	14
285	Effects of Co-Formulation of Amorphous Maltodextrin and Deliquescent Sodium Ascorbate on Moisture Sorption and Stability. International Journal of Food Properties, 2011, 14, 726-740.	1.3	13
286	Crystallization of acetaminophen on chitosan films blended with different acids. Chemical Engineering Science, 2015, 126, 1-9.	1.9	13
287	Surface Composition and Formulation Heterogeneity of Protein Solids Produced by Spray Drying. Pharmaceutical Research, 2020, 37, 14.	1.7	13
288	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13

#	Article	IF	CITATIONS
289	Phase separation in surfactant-containing amorphous solid dispersions: Orthogonal analytical methods to probe the effects of surfactants on morphology and phase composition. International Journal of Pharmaceutics, 2022, 619, 121708.	2.6	13
290	Improved dissolution of an enteric polymer and its amorphous solid dispersions by polymer salt formation. International Journal of Pharmaceutics, 2022, 622, 121886.	2.6	13
291	Leaching of Lopinavir Amorphous Solid Dispersions in Acidic Media. Pharmaceutical Research, 2016, 33, 1723-1735.	1.7	12
292	Acceleration of the crystal growth rate of low molecular weight organic compounds in supercooled liquids in the presence of polyhydroxybutyrate. CrystEngComm, 2017, 19, 80-87.	1.3	12
293	Interplay of Adsorption, Supersaturation and the Presence of an Absorptive Sink on Drug Release from Mesoporous Silica-Based Formulations. Pharmaceutical Research, 2020, 37, 163.	1.7	12
294	Phase Behavior and Crystallization Kinetics of a Poorly Water-Soluble Weakly Basic Drug as a Function of Supersaturation and Media Composition. Molecular Pharmaceutics, 2022, 19, 1146-1159.	2.3	12
295	Evaluating the non-isothermal crystallization behavior of organic molecules from the undercooled melt state using rapid heat/cool calorimetry. CrystEngComm, 2013, 15, 111-119.	1.3	11
296	Development of hot-melt extruded drug/polymer matrices for sustained delivery of meloxicam. Journal of Controlled Release, 2022, 342, 189-200.	4.8	11
297	Formulation and Processing Strategies which Underpin Susceptibility to Matrix Crystallization in Amorphous Solid Dispersions. Journal of Pharmaceutical Sciences, 2023, 112, 108-122.	1.6	11
298	Surface nanocoating of high drug-loading spray-dried amorphous solid dispersions by atomic layer coating: Excellent physical stability under accelerated storage conditions for two years. International Journal of Pharmaceutics, 2022, 620, 121747.	2.6	11
299	Complex Dielectric Properties of Microcrystalline Cellulose, Anhydrous Lactose, and α-Lactose Monohydrate Powders Using a Microwave-Based Open-Reflection Resonator Sensor. Journal of Pharmaceutical Sciences, 2011, 100, 2920-2934.	1.6	10
300	Nucleation and crystal growth of amorphous nilutamide – unusual low temperature behavior. CrystEngComm, 2014, 16, 7186.	1.3	10
301	Impact of Supramolecular Aggregation on the Crystallization Kinetics of Organic Compounds from the Supercooled Liquid State. Molecular Pharmaceutics, 2017, 14, 2126-2137.	2.3	10
302	Impact of Solid-State Form on the Disproportionation of Miconazole Mesylate. Molecular Pharmaceutics, 2018, 15, 40-52.	2.3	10
303	Comparison of Drug Release and Adsorption under Supersaturating Conditions for Ordered Mesoporous Silica with Indomethacin or Indomethacin Methyl Ester. Molecular Pharmaceutics, 2020, 17, 3062-3074.	2.3	10
304	The physical and chemical stability of amorphous (â^')-epi-gallocatechin gallate: Effects of water vapor sorption and storage temperature. Food Research International, 2014, 58, 112-123.	2.9	9
305	Synthesis and characterization of alkyl cellulose ï‰-carboxyesters for amorphous solid dispersion. Cellulose, 2017, 24, 609-625.	2.4	9
306	Amorphization of thiamine chloride hydrochloride: A study of the crystallization inhibitor properties of different polymers in thiamine chloride hydrochloride amorphous solid dispersions. Food Research International, 2017, 99, 363-374.	2.9	9

#	Article	IF	CITATIONS
307	A Comparative Study on the Performance of Inert and Functionalized Spheres Coated with Solid Dispersions Made of Two Structurally Related Antifungal Drugs. Molecular Pharmaceutics, 2017, 14, 3718-3728.	2.3	9
308	A novel approach for measuring room temperature enthalpy of mixing and associated solubility estimation of a drug in a polymer matrix. Polymer, 2018, 135, 50-60.	1.8	9
309	Conjugation of bile esters to cellulose by olefin cross-metathesis: A strategy for accessing complex polysaccharide structures. Carbohydrate Polymers, 2019, 221, 37-47.	5.1	9
310	Interaction of Polymers with Enzalutamide Nanodroplets—Impact on Droplet Properties and Induction Times. Molecular Pharmaceutics, 2021, 18, 836-849.	2.3	9
311	Crystals and Crystallization in Drug Delivery Design. Molecular Pharmaceutics, 2021, 18, 751-753.	2.3	9
312	A Mechanistic Study of Drug Mass Transport from Supersaturated Solutions Across PAMPA Membranes. Journal of Pharmaceutical Sciences, 2022, 111, 102-115.	1.6	9
313	Moistureâ€Mediated Interactions Between Amorphous Maltodextrins and Crystalline Fructose. Journal of Food Science, 2017, 82, 1142-1156.	1.5	8
314	Stochastic Differential Scanning Calorimetry by Nonlinear Optical Microscopy. Analytical Chemistry, 2020, 92, 1171-1178.	3.2	8
315	Amorphization of Thiamine Chloride Hydrochloride: Effects of Physical State and Polymer Type on the Chemical Stability of Thiamine in Solid Dispersions. International Journal of Molecular Sciences, 2020, 21, 5935.	1.8	8
316	Crystallization Kinetics in Fasted-State Simulated and Aspirated Human Intestinal Fluids. Crystal Growth and Design, 2021, 21, 2807-2820.	1.4	8
317	Label-Free Autofluorescence-Detected Mid-Infrared Photothermal Microscopy of Pharmaceutical Materials. Analytical Chemistry, 2022, 94, 6512-6520.	3.2	8
318	Effects of Chloride and Sulfate Salts on the Inhibition or Promotion of Sucrose Crystallization in Initially Amorphous Sucrose–Salt Blends. Journal of Agricultural and Food Chemistry, 2017, 65, 11259-11272.	2.4	7
319	Selective synthesis of curdlan ω-carboxyamides by Staudinger ylide nucleophilic ring-opening. Carbohydrate Polymers, 2018, 190, 222-231.	5.1	7
320	Impact of phospholipid digests and bile acid pool variations on the crystallization of atazanavir from supersaturated solutions. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153, 68-83.	2.0	7
321	Impact of Polymer Type on Thermal Degradation of Amorphous Solid Dispersions Containing Ritonavir. Molecular Pharmaceutics, 2022, 19, 332-344.	2.3	7
322	Dissociation of Water on the Surface of Organic Salts Studied by X-ray Photoelectron Spectroscopy. Langmuir, 2010, 26, 11998-12002.	1.6	6
323	Gaining Thermodynamic Insight From Distinct Glass Formation Kinetics of Structurally Similar Organic Compounds. Journal of Pharmaceutical Sciences, 2018, 107, 192-202.	1.6	6
324	Effect of pH and concentration on the chemical stability and reaction kinetics of thiamine mononitrate and thiamine chloride hydrochloride in solution. BMC Chemistry, 2021, 15, 47.	1.6	6

#	Article	IF	CITATIONS
325	Optimization of Amorphization Kinetics during Hot Melt Extrusion by Particle Engineering: An Experimental and Computational Study. Crystal Growth and Design, 2022, 22, 821-841.	1.4	6
326	Designing synergistic crystallization inhibitors: Bile salt derivatives of cellulose with enhanced hydrophilicity. Carbohydrate Polymers, 2022, 292, 119680.	5.1	6
327	2-(Biphenyl-4-yl)acetic acid (felbinac). Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2609-o2609.	0.2	5
328	Assessing the Risk of Salt Disproportionation Using Crystal Structure and Surface Topography Analysis. Crystal Growth and Design, 2018, 18, 7027-7040.	1.4	5
329	Effects of emulsifiers on the moisture sorption and crystallization of amorphous sucrose lyophiles. Food Chemistry: X, 2019, 3, 100050.	1.8	5
330	Optimizing the Quality of Food Powder Products: The Challenges of Moisture-Mediated Phase Transformations. Annual Review of Food Science and Technology, 2019, 10, 457-478.	5.1	5
331	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
332	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
333	Chemical stability and reaction kinetics of thiamine mononitrate in the aqueous phase of bread dough. Food Research International, 2021, 140, 110084.	2.9	5
334	Effect of Storage Humidity on Physical Stability of Spray-Dried Naproxen Amorphous Solid Dispersions with Polyvinylpyrrolidone: Two Fluid Nozzle vs. Three Fluid Nozzle. Pharmaceutics, 2021, 13, 1074.	2.0	5
335	Effect of Excipients on Salt Disproportionation during Dissolution: A Novel Application of In Situ Raman Imaging. Molecular Pharmaceutics, 2021, 18, 3247-3259.	2.3	5
336	Heat transport model for the deliquescence kinetics of crystalline ingredients and mixtures. Journal of Food Engineering, 2016, 169, 298-308.	2.7	4
337	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
338	Variable-Temperature NMR Analysis of the Thermodynamics of Polymer Partitioning between Aqueous and Drug-Rich Phases and Its Significance for Amorphous Formulations. Molecular Pharmaceutics, 2021, , .	2.3	4
339	Characterization of Frozen Glucose Solutions. Pharmaceutical Development and Technology, 1997, 2, 395-402.	1.1	3
340	1-[(Biphenyl-4-yl)(phenyl)methyl]-1 <i>H</i> -imidazole (bifonazole). Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2649-o2649.	0.2	3
341	Study of Water Adsorption on Organics Crystal Surfaces Using a Modified X-ray Photoelectron Spectroscopy Instrument. Analytical Chemistry, 2011, 83, 1144-1147.	3.2	3
342	Raman Spectroscopy for the Analysis of Counterfeit Tablets. , 2012, , 561-572.		3

Raman Spectroscopy for the Analysis of Counterfeit Tablets. , 2012, , 561-572. 342

#	Article	IF	CITATIONS
343	George Zografi and the Science of Solids and Surfaces. Journal of Pharmaceutical Sciences, 2014, 103, 2592-2594.	1.6	3
344	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
345	Polymer effects on crystallization at the amorphous atazanavir-water interface. Journal of Crystal Growth, 2021, 571, 126254.	0.7	3
346	Chiral discrimination by a cellulose polymer: differential crystallization inhibition of enantiomers in amorphous dispersions. CrystEngComm, 2015, 17, 5046-5053.	1.3	2
347	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
348	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
349	Amorphization of Thiamine Mononitrate: A Study of Crystallization Inhibition and Chemical Stability of Thiamine in Thiamine Mononitrate Amorphous Solid Dispersions. International Journal of Molecular Sciences, 2020, 21, 9370.	1.8	2
350	The role of surface energy heterogeneity on crystal morphology during solid-state crystallization at the amorphous atazanavir–water interface. CrystEngComm, 2020, 22, 3179-3187.	1.3	2
351	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
352	Effects of polyphenols on crystallization of amorphous sucrose lyophiles. Food Chemistry, 2021, 338, 128061.	4.2	2
353	Celebrating Women in the Pharmaceutical Sciences. Molecular Pharmaceutics, 2021, 18, 1487-1490.	2.3	2
354	Nilutamide. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o591-o591.	0.2	2
355	The Myth of Meritocracy in the Pharmaceutical Sciences. Molecular Pharmaceutics, 2022, 19, 729-730.	2.3	2
356	2-Butoxy-N-[2-(diethylamino)ethyl]quinoline-4-carboxamide (dibucaine). Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3189-o3189.	0.2	1
357	Professor Peter York—A Distinguished Career in Powders, Processing, and Particle Design. Journal of Pharmaceutical Sciences, 2017, 106, 2-4.	1.6	1
358	Impact of Additives on Heterogeneous Crystallization of Acetaminophen. International Journal of Chemical Engineering, 2018, 2018, 1-7.	1.4	1
359	The Effect of Promiscuous Aggregation on in Vitro Drug Metabolism Assays. Pharmaceutical Research, 2019, 36, 170.	1.7	1
360	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1

#	Article	IF	CITATIONS
361	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
362	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
363	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
364	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
365	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
366	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
367	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
368	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
369	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
370	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
371	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
372	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
373	Work–Life Balance in the Pharmaceutical Sciences: More Essential Than Ever Today. Molecular Pharmaceutics, 2021, 18, 3649-3651.	2.3	1
374	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
375	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
376	Review of the Picture a Scientist Documentary. Molecular Pharmaceutics, 2022, 19, 359-360.	2.3	1
377	Response to Dr. Peleg's Letter to the Editor. Journal of Food Science, 2012, 77, xii-xiv.	1.5	Ο
378	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0

#	Article	IF	CITATIONS
379	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
380	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	0
381	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
382	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	0
383	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	Ο
384	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	0
385	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	Ο
386	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
387	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	Ο
388	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	0
389	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0
390	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	0
391	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	Ο
392	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
393	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
394	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0
395	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
396	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0

#	Article	IF	CITATIONS
397	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		Ο
398	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
399	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
400	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
401	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
402	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0
403	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
404	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	0
405	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	Ο
406	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	0
407	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	0
408	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
409	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
410	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	0
411	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	Ο
412	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0
413	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
414	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0

#	Article	IF	CITATIONS
415	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	Ο
416	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
417	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
418	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
419	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
420	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
421	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	Ο
422	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0
423	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	Ο
424	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0
425	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	Ο
426	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
427	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	Ο
428	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
429	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	Ο
430	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
431	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
432	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	0

#	Article	IF	CITATIONS
433	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
434	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
435	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
436	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	0
437	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
438	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
439	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	Ο
440	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
441	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	Ο
442	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0
443	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
444	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
445	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	Ο
446	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
447	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	Ο
448	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
449	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
450	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0

#	Article	IF	CITATIONS
451	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
452	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
453	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
454	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
455	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
456	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
457	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
458	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
459	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0
460	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	0
461	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0
462	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
463	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	0
464	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
465	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
466	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
467	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
468	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0

#	Article	IF	CITATIONS
469	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	Ο
470	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
471	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
472	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0
473	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
474	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0
475	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
476	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
477	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0
478	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0