
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4580818/publications.pdf Version: 2024-02-01

ION F KEELEV

#	Article	IF	CITATIONS
1	Climate change and plant regeneration from seeds in Mediterranean regions of the Northern Hemisphere. , 2022, , 101-114.		2
2	Fireâ€driven vegetation type conversion in Southern California. Ecological Applications, 2022, 32, e2626.	3.8	10
3	Mechanisms of forest resilience. Forest Ecology and Management, 2022, 512, 120129.	3.2	70
4	Vegetation type conversion in the US Southwest: frontline observations and management responses. Fire Ecology, 2022, 18, .	3.0	17
5	Effects of postfire climate and seed availability on postfire conifer regeneration. Ecological Applications, 2021, 31, e02280.	3.8	33
6	Multiple-Scale Relationships between Vegetation, the Wildland–Urban Interface, and Structure Loss to Wildfire in California. Fire, 2021, 4, 12.	2.8	14
7	Wildfires and global change. Frontiers in Ecology and the Environment, 2021, 19, 387-395.	4.0	153
8	lgnitions explain more than temperature or precipitation in driving Santa Ana wind fires. Science Advances, 2021, 7, .	10.3	11
9	Large California wildfires: 2020 fires in historical context. Fire Ecology, 2021, 17, .	3.0	77
10	Mapping fire regime ecoregions in California. International Journal of Wildland Fire, 2020, 29, 595.	2.4	14
11	Fire, climate and changing forests. Nature Plants, 2019, 5, 774-775.	9.3	36
12	Extent and drivers of vegetation type conversion in Southern California chaparral. Ecosphere, 2019, 10, e02796.	2.2	25
13	Factors Associated with Structure Loss in the 2013–2018 California Wildfires. Fire, 2019, 2, 49.	2.8	45
14	Twenty-first century California, USA, wildfires: fuel-dominated vs. wind-dominated fires. Fire Ecology, 2019, 15, .	3.0	93
15	The Effect of Ecophysiological Traits on Live Fuel Moisture Content. Fire, 2019, 2, 28.	2.8	32
16	Wildfires as an ecosystem service. Frontiers in Ecology and the Environment, 2019, 17, 289-295.	4.0	199
17	Postfire population dynamics of a fire-dependent cypress. Plant Ecology, 2019, 220, 605-617.	1.6	5
18	Framework for monitoring shrubland community integrity in California Mediterranean type ecosystems: Information for policy makers and land managers. Conservation Science and Practice, 2019, 1, e109.	2.0	0

#	Article	IF	CITATIONS
19	THREE. Fire as an Ecosystem Process. , 2019, , 27-46.		1
20	Drivers of chaparral type conversion to herbaceous vegetation in coastal Southern California. Diversity and Distributions, 2019, 25, 90-101.	4.1	34
21	Chaparral Landscape Conversion in Southern California. Springer Series on Environmental Management, 2018, , 323-346.	0.3	25
22	Historical patterns of wildfire ignition sources in California ecosystems. International Journal of Wildland Fire, 2018, 27, 781.	2.4	83
23	Drivers of Chaparral Plant Diversity. Springer Series on Environmental Management, 2018, , 29-51.	0.3	1
24	Fire and Plant Diversification in Mediterranean-Climate Regions. Frontiers in Plant Science, 2018, 9, 851.	3.6	81
25	Native Peoples' Relationship to theÂCalifornia Chaparral. Springer Series on Environmental Management, 2018, , 79-121.	0.3	7
26	Trends and drivers of fire activity vary across California aridland ecosystems. Journal of Arid Environments, 2017, 144, 110-122.	2.4	21
27	Different historical fire–climate patterns in California. International Journal of Wildland Fire, 2017, 26, 253.	2.4	48
28	Epicormic Resprouting in Fire-Prone Ecosystems. Trends in Plant Science, 2017, 22, 1008-1015.	8.8	112
29	Human presence diminishes the importance of climate in driving fire activity across the United States. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13750-13755.	7.1	137
30	Can private land conservation reduce wildfire risk to homes? A case study in San Diego County, California, USA. Landscape and Urban Planning, 2017, 157, 161-169.	7.5	15
31	The importance of building construction materials relative to other factors affecting structure survival during wildfire. International Journal of Disaster Risk Reduction, 2017, 21, 140-147.	3.9	57
32	Characters in Arctostaphylos Taxonomy. Madroño, 2017, 64, 138-153.	0.4	0
33	Impacts of Mastication Fuel Treatments on California, USA, Chaparral Vegetation Structure and Composition. Fire Ecology, 2017, 13, 120-138.	3.0	11
34	Flammability as an ecological and evolutionary driver. Journal of Ecology, 2017, 105, 289-297.	4.0	196
35	Setting priorities for private land conservation in fire-prone landscapes: Are fire risk reduction and biodiversity conservation competing or compatible objectives?. Ecology and Society, 2016, 21, .	2.3	18
36	Climate Change and Future Fire Regimes: Examples from California. Geosciences (Switzerland), 2016, 6, 37.	2.2	107

#	Article	IF	CITATIONS
37	Dispersal Limitation Does Not Control High Elevational Distribution of Alien Plant Species in the Southern Sierra Nevada, California. Natural Areas Journal, 2016, 36, 277-287.	0.5	3
38	Towards understanding resprouting at the global scale. New Phytologist, 2016, 209, 945-954.	7.3	197
39	Historical reconstructions of California wildfires vary by data source. International Journal of Wildland Fire, 2016, 25, 1221.	2.4	25
40	Resprouting and seeding hypotheses: a test of the gap-dependent model using resprouting and obligate seeding subspecies of Arctostaphylos. Plant Ecology, 2016, 217, 743-750.	1.6	21
41	Exotic Annual Bromus Invasions: Comparisons Among Species and Ecoregions in the Western United States. Springer Series on Environmental Management, 2016, , 11-60.	0.3	44
42	Attacking invasive grasses. Applied Vegetation Science, 2015, 18, 541-542.	1.9	2
43	Different fire–climate relationships on forested and non-forested landscapes in the Sierra Nevada ecoregion. International Journal of Wildland Fire, 2015, 24, 27.	2.4	22
44	Faunal Responses to Fire in Chaparral and Sage Scrub in California, USA. Fire Ecology, 2015, 11, 128-148.	3.0	42
45	Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. Environmental Research Letters, 2015, 10, 114013.	5.2	85
46	Location, timing and extent of wildfire vary by cause of ignition. International Journal of Wildland Fire, 2015, 24, 37.	2.4	121
47	Evolutionary ecology of resprouting and seeding in fireâ€prone ecosystems. New Phytologist, 2014, 204, 55-65.	7.3	380
48	Aquatic CAM photosynthesis: A brief history of its discovery. Aquatic Botany, 2014, 118, 38-44.	1.6	9
49	The role of defensible space for residential structure protection during wildfires. International Journal of Wildland Fire, 2014, 23, 1165.	2.4	118
50	Abrupt Climate-Independent Fire Regime Changes. Ecosystems, 2014, 17, 1109-1120.	3.4	139
51	Three Papers That Influenced The Direction of My Career. Bulletin of the Ecological Society of America, 2014, 95, 216-217.	0.2	1
52	Influence of Fuels, Weather and the Built Environment on the Exposure of Property to Wildfire. PLoS ONE, 2014, 9, e111414.	2.5	31
53	Changes in fire intensity have carryâ€over effects on plant responses after the next fire in southern <scp>C</scp> alifornia chaparral. Journal of Vegetation Science, 2013, 24, 395-404.	2.2	10

54 The 2003 and 2007 Wildfires in Southern California. , 2013, , 42-52.

7

#	Article	IF	CITATIONS
55	Land Use Planning and Wildfire: Development Policies Influence Future Probability of Housing Loss. PLoS ONE, 2013, 8, e71708.	2.5	89
56	Ecological effects of alternative fuel-reduction treatments: highlights of the National Fire and Fire Surrogate study (FFS). International Journal of Wildland Fire, 2013, 22, 63.	2.4	90
57	Fuel treatment impacts on estimated wildfire carbon loss from forests in Montana, Oregon, California, and Arizona. Ecosphere, 2012, 3, 1-17.	2.2	31
58	The impact of antecedent fire area on burned area in southern California coastal ecosystems. Journal of Environmental Management, 2012, 113, 301-307.	7.8	42
59	Postfire Chaparral Regeneration Under Mediterranean and Non-Mediterranean Climates. Madroño, 2012, 59, 109-127.	0.4	8
60	A Plant Distribution Shift: Temperature, Drought or Past Disturbance?. PLoS ONE, 2012, 7, e31173.	2.5	29
61	Fire-driven alien invasion in a fire-adapted ecosystem. Oecologia, 2012, 169, 1043-1052.	2.0	135
62	Ecology and evolution of pine life histories. Annals of Forest Science, 2012, 69, 445-453.	2.0	176
63	Housing Arrangement and Location Determine the Likelihood of Housing Loss Due to Wildfire. PLoS ONE, 2012, 7, e33954.	2.5	131
64	Ecological strategies in California chaparral: interacting effects of soils, climate, and fire on specific leaf area. Plant Ecology and Diversity, 2011, 4, 179-188.	2.4	38
65	Comparing the role of fuel breaks across southern California national forests. Forest Ecology and Management, 2011, 261, 2038-2048.	3.2	73
66	Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 2011, 16, 406-411.	8.8	735
67	Factors affecting fuel break effectiveness in the control of large fires on the Los Padres National Forest, California. International Journal of Wildland Fire, 2011, 20, 764.	2.4	49
68	The application of prototype point processes for the summary and description of California wildfires. Journal of Time Series Analysis, 2011, 32, 420-429.	1.2	7
69	The human dimension of fire regimes on Earth. Journal of Biogeography, 2011, 38, 2223-2236.	3.0	845
70	Fire and Invasive Plants on California Landscapes. Ecological Studies, 2011, , 193-221.	1.2	20
71	The national Fire and Fire Surrogate study: effects of fuel reduction methods on forest vegetation structure and fuels. Ecological Applications, 2009, 19, 285-304.	3.8	213
72	Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests. Ecological Applications, 2009, 19, 305-320.	3.8	326

#	Article	IF	CITATIONS
73	A Burning Story: The Role of Fire in the History of Life. BioScience, 2009, 59, 593-601.	4.9	749
74	Fire in the Earth System. Science, 2009, 324, 481-484.	12.6	2,330
75	Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 2009, 18, 116.	2.4	1,470
76	Large, highâ€intensity fire events in southern California shrublands: debunking the fineâ€grain age patch model. Ecological Applications, 2009, 19, 69-94.	3.8	110
77	Biogeochemical legacy of prescribed fire in a giant sequoia–mixed conifer forest: A 16â€year record of watershed balances. Journal of Geophysical Research, 2008, 113, .	3.3	16
78	FIRE SEVERITY AND ECOSYTEM RESPONSES FOLLOWING CROWN FIRES IN CALIFORNIA SHRUBLANDS. Ecological Applications, 2008, 18, 1530-1546.	3.8	117
79	Ecological effects of large fires on US landscapes: benefit or catastrophe?. International Journal of Wildland Fire, 2008, 17, 696.	2.4	195
80	HUMAN INFLUENCE ON CALIFORNIA FIRE REGIMES. , 2007, 17, 1388-1402.		515
81	Impact of prescribed fire and other factors on cheatgrass persistence in a Sierra Nevada ponderosa pine forest. International Journal of Wildland Fire, 2007, 16, 96.	2.4	69
82	Role of burning season on initial understory vegetation response to prescribed fire in a mixed conifer forest. Canadian Journal of Forest Research, 2007, 37, 11-22.	1.7	68
83	Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands. Environmental Modelling and Software, 2007, 22, 1641-1653.	4.5	21
84	A critical assessment of the Burning Index in Los Angeles County, California. International Journal of Wildland Fire, 2007, 16, 473.	2.4	14
85	A Structural Equation Model Analysis Of Postfire Plant Diversity In California Shrublands. , 2006, 16, 503-514.		166
86	SIMULATING THE EFFECTS OF FREQUENT FIRE ON SOUTHERN CALIFORNIA COASTAL SHRUBLANDS. , 2006, 16, 1744-1756.		80
87	DEMOGRAPHIC PATTERNS OF POSTFIRE REGENERATION IN MEDITERRANEAN-CLIMATE SHRUBLANDS OF CALIFORNIA. Ecological Monographs, 2006, 76, 235-255.	5.4	89
88	Fuel Breaks Affect Nonnative Species Abundance In Californian Plant Communities. , 2006, 16, 515-527.		58
89	Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest. International Journal of Wildland Fire, 2006, 15, 37.	2.4	103
90	Fire Management Impacts on Invasive Plants in the Western United States. Conservation Biology, 2006, 20, 375-384.	4.7	250

#	Article	IF	CITATIONS
91	THE ROLE OF FIRE REFUGIA IN THE DISTRIBUTION OF PINUS SABINIANA (PINACEAE) IN THE SOUTHERN SIERRA NEVADA. Madroño, 2006, 53, 364-372.	0.4	25
92	A Structural Equation Model Analysis Of Postfire Plant Diversity In California Shrublands. , 2006, 16, 503.		1
93	Fire history of the San Francisco East Bay region and implications for landscape patterns. International Journal of Wildland Fire, 2005, 14, 285.	2.4	43
94	Fire and the Miocene expansion of C4 grasslands. Ecology Letters, 2005, 8, 683-690.	6.4	291
95	Factors affecting plant diversity during post-fire recovery and succession of mediterranean-climate shrublands in California, USA. Diversity and Distributions, 2005, 11, 525-537.	4.1	75
96	Plot shape effects on plant species diversity measurements. Journal of Vegetation Science, 2005, 16, 249-256.	2.2	47
97	NO news is no new news. Seed Science Research, 2005, 15, 367-371.	1.7	3
98	ALIEN PLANT DYNAMICS FOLLOWING FIRE IN MEDITERRANEAN-CLIMATE CALIFORNIA SHRUBLANDS. , 2005, 15, 2109-2125.		129
99	DETERMINANTS OF POSTFIRE RECOVERY AND SUCCESSION IN MEDITERRANEAN-CLIMATE SHRUBLANDS OF CALIFORNIA. , 2005, 15, 1515-1534.		169
100	Fire suppression impacts on postfire recovery of Sierra Nevada chaparral shrublands. International Journal of Wildland Fire, 2005, 14, 255.	2.4	33
101	Plot shape effects on plant species diversity measurements. Journal of Vegetation Science, 2005, 16, 249.	2.2	32
102	Ecological impacts of wheat seeding after a Sierra Nevada wildfire. International Journal of Wildland Fire, 2004, 13, 73.	2.4	37
103	Testing a basic assumption of shrubland fire management: how important is fuel age?. Frontiers in Ecology and the Environment, 2004, 2, 67-72.	4.0	142
104	PLANT FUNCTIONAL TRAITS IN RELATION TO FIRE IN CROWN-FIRE ECOSYSTEMS. Ecology, 2004, 85, 1085-1100.	3.2	539
105	Effects of Invasive Alien Plants on Fire Regimes. BioScience, 2004, 54, 677.	4.9	1,193
106	Impact of antecedent climate on fire regimes in coastal California. International Journal of Wildland Fire, 2004, 13, 173.	2.4	91
107	Species-area relationships in Mediterranean-climate plant communities. Journal of Biogeography, 2003, 30, 1629-1657.	3.0	49
108	Relating species abundance distributions to species-area curves in two Mediterranean-type shrublands. Diversity and Distributions, 2003, 9, 253-259.	4.1	21

#	Article	IF	CITATIONS
109	FIRE AND GRAZING IMPACTS ON PLANT DIVERSITY AND ALIEN PLANT INVASIONS IN THE SOUTHERN SIERRA NEVADA. , 2003, 13, 1355-1374.		217
110	Impact of Past, Present, and Future Fire Regimes on North American Mediterranean Shrublands. , 2003, , 218-262.		53
111	Fire Management of California Shrubland Landscapes. Environmental Management, 2002, 29, 395-408.	2.7	97
112	Native American impacts on fire regimes of the California coastal ranges. Journal of Biogeography, 2002, 29, 303-320.	3.0	168
113	Historic Fire Regime in Southern California Shrublands. Conservation Biology, 2001, 15, 1536-1548.	4.7	199
114	History and Management of Crown-Fire Ecosystems: a Summary and Response. Conservation Biology, 2001, 15, 1561-1567.	4.7	55
115	On Incorporating Fire into Our Thinking about Natural Ecosystems: A Response to Saha and Howe. American Naturalist, 2001, 158, 664-670.	2.1	25
116	Mast Flowering and Semelparity in Bamboos: The Bamboo Fire Cycle Hypothesis. American Naturalist, 1999, 154, 383-391.	2.1	146
117	C 4 photosynthetic modifications in the evolutionary transition from land to water in aquatic grasses. Oecologia, 1998, 116, 85-97.	2.0	61
118	CAM photosynthesis in submerged aquatic plants. Botanical Review, The, 1998, 64, 121-175.	3.9	188
119	SMOKE-INDUCED SEED GERMINATION IN CALIFORNIA CHAPARRAL. Ecology, 1998, 79, 2320-2336.	3.2	230
120	SMOKE-INDUCED SEED GERMINATION IN CALIFORNIA CHAPARRAL. , 1998, 79, 2320.		2
121	Convergent seed germination in South African fynbos and Californian chaparral. , 1997, 133, 153-167.		135
122	Recruitment of Seedlings and Vegetative Sprouts in Unburned Chaparral. Ecology, 1992, 73, 1194-1208.	3.2	131
123	Demographic structure of California chaparral in the long-term absence of fire. Journal of Vegetation Science, 1992, 3, 79-90.	2.2	75
124	Seed germination and life history syndromes in the California chaparral. Botanical Review, The, 1991, 57, 81-116.	3.9	372
125	CARBON UPTAKE CHARACTERISTICS IN TWO HIGH ELEVATION POPULATIONS OF THE AQUATIC CAM PLANT ISOETES BOLANDERI (ISOETACAE). American Journal of Botany, 1990, 77, 682-688.	1.7	11
126	Carbon Uptake Characteristics in Two High Elevation Populations of the Aquatic Cam Plant Isoetes bolanderi (Isoetacae). American Journal of Botany, 1990, 77, 682.	1.7	10

#	Article	IF	CITATIONS
127	ANAEROBIOSIS AS A STIMULUS TO GERMINATION IN TWO VERNAL POOL GRASSES. American Journal of Botany, 1988, 75, 1086-1089.	1.7	20
128	Anaerobiosis as a Stimulus to Germination in Two Vernal Pool Grasses. American Journal of Botany, 1988, 75, 1086.	1.7	11
129	Demographic Structure of Ceanothus Megacarpus Chaparral in the Long Absence of Fire. Ecology, 1987, 68, 211-213.	3.2	9
130	Resilience of mediterranean shrub communities to fires. Tasks for Vegetation Science, 1986, , 95-112.	0.6	225
131	Carbon, oxygen and hydrogen isotope abundances inStylites reflect its unique physiology. Oecologia, 1985, 67, 598-600.	2.0	12
132	Postfire Recovery of California Coastal Sage Scrub. American Midland Naturalist, 1984, 111, 105.	0.4	60
133	Stylites, a vascular land plant without stomata absorbs CO2 via its roots. Nature, 1984, 310, 694-695.	27.8	116
134	Carbon Assimilation Characteristics of the Aquatic CAM Plant, <i>Isoetes howellii</i> . Plant Physiology, 1984, 76, 525-530.	4.8	74
135	Short note Report of diurnal acid metabolism in two aquatic Australian species of Isoetes. Austral Ecology, 1983, 8, 203-204.	1.5	5
136	Crassulacean acid metabolism in the seasonally submerged aquatic Isoetes howellii. Oecologia, 1983, 58, 57-62.	2.0	49
137	Crassulacean acid metabolism in Isoetes bolanderi in high elevation oligotrophic lakes. Oecologia, 1983, 58, 63-69.	2.0	39
138	DIURNAL ACID METABOLISM IN ISOETES HOWELLII FROM A TEMPORARY POOL AND A PERMANENT LAKE. American Journal of Botany, 1983, 70, 854-857.	1.7	17
139	Diurnal Acid Metabolism in Isoetes howellii from a Temporary Pool and a Permanent Lake. American Journal of Botany, 1983, 70, 854.	1.7	8
140	Gas Exchange Characteristics of the Submerged Aquatic Crassulacean Acid Metabolism Plant, <i>Isoetes howellii</i> . Plant Physiology, 1982, 70, 1455-1458.	4.8	52
141	DISTRIBUTION OF DIURNAL ACID METABOLISM IN THE GENUS ISOETES. American Journal of Botany, 1982, 69, 254-257.	1.7	77
142	Distribution of Diurnal Acid Metabolism in the Genus Isoetes. American Journal of Botany, 1982, 69, 254.	1.7	40
143	ISOETES HOWELLII: A SUBMERGED AQUATIC CAM PLANT?. American Journal of Botany, 1981, 68, 420-424.	1.7	69
144	POSTâ€FIRE REGENERATION OF SOUTHERN CALIFORNIA CHAPARRAL. American Journal of Botany, 1981, 68, 524-530.	1.7	72

#	Article	IF	CITATIONS
145	Postfire Succession of the Herbaceous Flora in Southern California Chaparral. Ecology, 1981, 62, 1608-1621.	3.2	143
146	Isoetes howellii: A Submerged Aquatic Cam Plant?. American Journal of Botany, 1981, 68, 420.	1.7	54
147	Post-Fire Regeneration of Southern California Chaparral. American Journal of Botany, 1981, 68, 524.	1.7	46
148	ENDOMYCORRHIZAE INFLUENCE GROWTH OF BLACKGUM SEEDLINGS IN FLOODED SOILS. American Journal of Botany, 1980, 67, 6-9.	1.7	26
149	Endomycorrhizae Influence Growth of Blackgum Seedlings in Flooded Soils. American Journal of Botany, 1980, 67, 6.	1.7	18
150	Reproduction of Chaparral Shrubs After Fire: A Comparison of Sprouting and Seeding Strategies. American Midland Naturalist, 1978, 99, 142.	0.4	345
151	Malic Acid Accumulation in Roots in Response to Flooding: Evidence Contrary to its Role as an Alternative to Ethanol. Journal of Experimental Botany, 1978, 29, 1345-1349.	4.8	21
152	Seed Production, Seed Populations in Soil, and Seedling Production After Fire for Two Congeneric	3.2	182

152 Pairs of Sprouting and Nonsprouting Chaparal Shrubs. Ecology, 1977, 58, 820-829.