
Takeo Watanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4579828/publications.pdf Version: 2024-02-01

TAKEO WATANARE

#	Article	IF	CITATIONS
1	Early Visual Cortex Stimulation Modifies Well-Consolidated Perceptual Gains. Cerebral Cortex, 2021, 31, 138-146.	2.9	11
2	The DecNef collection, fMRI data from closed-loop decoded neurofeedback experiments. Scientific Data, 2021, 8, 65.	5.3	9
3	A behavioral training protocol using visual perceptual learning to improve a visual skill. STAR Protocols, 2021, 2, 100240.	1.2	1
4	Visual perceptual learning of a primitive feature in human V1/V2 as a result of unconscious processing, revealed by decoded functional MRI neurofeedback (DecNef). Journal of Vision, 2021, 21, 24.	0.3	5
5	Fundamental Differences in Visual Perceptual Learning between Children and Adults. Current Biology, 2021, 31, 427-432.e5.	3.9	15
6	Effects of stimulus and task structure on temporal perceptual learning. Scientific Reports, 2021, 11, 668.	3.3	2
7	fMRI neurofeedback for perception and attention. , 2021, , 85-105.		0
8	Coregistration of magnetic resonance spectroscopy and polysomnography for sleep analysis in human subjects. STAR Protocols, 2021, 2, 100974.	1.2	4
9	The facilitation of learning and memory by sleep. , 2021, , .		0
10	Complementary contributions of non-REM and REM sleep to visual learning. Nature Neuroscience, 2020, 23, 1150-1156.	14.8	60
11	Role of endogenous and exogenous attention in task-relevant visual perceptual learning. PLoS ONE, 2020, 15, e0237912.	2.5	12
12	Supervised Learning Occurs in Visual Perceptual Learning of Complex Natural Images. Current Biology, 2020, 30, 2995-3000.e3.	3.9	20
13	Reward does not facilitate visual perceptual learning until sleep occurs. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 959-968.	7.1	21
14	Post-training TMS abolishes performance improvement and releases future learning from interference. Communications Biology, 2019, 2, 320.	4.4	14
15	Category-Induced Transfer of Visual Perceptual Learning. Current Biology, 2019, 29, 1374-1378.e3.	3.9	23
16	Perceptual learning of task-irrelevant features depends on the sensory context. Scientific Reports, 2019, 9, 1666.	3.3	5
17	Trained-feature–specific offline learning by sleep in an orientation detection task. Journal of Vision, 2019, 19, 12.	0.3	12
18	Toward a comprehensive understanding of the neural mechanisms of decoded neurofeedback. NeuroImage, 2019, 188, 539-556.	4.2	69

#	Article	IF	CITATIONS
19	Feature-Specific Awake Reactivation in Human V1 after Visual Training. Journal of Neuroscience, 2018, 38, 9648-9657.	3.6	17
20	Consolidation and reconsolidation share behavioural and neurochemical mechanisms. Nature Human Behaviour, 2018, 2, 507-513.	12.0	50
21	Overlearning hyperstabilizes a skill by rapidly making neurochemical processing inhibitory-dominant. Nature Neuroscience, 2017, 20, 470-475.	14.8	146
22	Neuroscience: When perceptual learning occurs. Nature Human Behaviour, 2017, 1, .	12.0	2
23	Advances in fMRI Real-Time Neurofeedback. Trends in Cognitive Sciences, 2017, 21, 997-1010.	7.8	190
24	Differential Activation Patterns in the Same Brain Region Led to Opposite Emotional States. PLoS Biology, 2016, 14, e1002546.	5.6	57
25	Learning to Associate Orientation with Color in Early Visual Areas by Associative Decoded fMRI Neurofeedback. Current Biology, 2016, 26, 1861-1866.	3.9	97
26	V3A takes over a job of MT+ after training on a visual task. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6092-6093.	7.1	0
27	Night Watch in One Brain Hemisphere during Sleep Associated with the First-Night Effect in Humans. Current Biology, 2016, 26, 1190-1194.	3.9	186
28	Neuroimaging Evidence for 2 Types of Plasticity in Association with Visual Perceptual Learning. Cerebral Cortex, 2016, 26, 3681-3689.	2.9	29
29	Frequent Video Game Players Resist Perceptual Interference. PLoS ONE, 2015, 10, e0120011.	2.5	19
30	Perceptual Learning: Toward a Comprehensive Theory. Annual Review of Psychology, 2015, 66, 197-221.	17.7	257
31	Visual perceptual learning by operant conditioning training follows rules of contingency. Visual Cognition, 2015, 23, 147-160.	1.6	14
32	Real-Time Strategy Video Game Experience and Visual Perceptual Learning. Journal of Neuroscience, 2015, 35, 10485-10492.	3.6	47
33	Dual mechanisms governing reward-driven perceptual learning. F1000Research, 2015, 4, 764.	1.6	6
34	Twoâ€stage model in perceptual learning: toward a unified theory. Annals of the New York Academy of Sciences, 2014, 1316, 18-28.	3.8	56
35	Age-Related Declines of Stability in Visual Perceptual Learning. Current Biology, 2014, 24, 2926-2929.	3.9	23
36	The first-night effect suppresses the strength of slow-wave activity originating in the visual areas during sleep. Vision Research, 2014, 99, 154-161.	1.4	20

#	Article	IF	CITATIONS
37	Can attenuation of attentional blink also evoke removal of repetition blindness?. Vision Research, 2014, 99, 141-147.	1.4	4
38	Reward eliminates retrieval-induced forgetting. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17326-17329.	7.1	10
39	White matter in the older brain is more plastic than in the younger brain. Nature Communications, 2014, 5, 5504.	12.8	48
40	Optimization of perceptual learning: Effects of task difficulty and external noise in older adults. Vision Research, 2014, 99, 37-45.	1.4	20
41	Location specific sleep spindle activity in the early visual areas and perceptual learning. Vision Research, 2014, 99, 162-171.	1.4	55
42	Enhanced Spontaneous Oscillations in the Supplementary Motor Area Are Associated with Sleep-Dependent Offline Learning of Finger-Tapping Motor-Sequence Task. Journal of Neuroscience, 2013, 33, 13894-13902.	3.6	80
43	Perceptual Learning and Aging: Improved Performance for Low-Contrast Motion Discrimination. Frontiers in Psychology, 2013, 4, 66.	2.1	26
44	Preference suppression caused by misattribution of task-irrelevant subliminal motion. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3443-3448.	2.6	2
45	Resetting capacity limitations revealed by long-lasting elimination of attentional blink through training. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12242-12247.	7.1	55
46	Recent progress in perceptual learning research. Wiley Interdisciplinary Reviews: Cognitive Science, 2012, 3, 293-299.	2.8	14
47	Is perceptual learning associated with changes in a sensory region?. F1000 Biology Reports, 2012, 4, 24.	4.0	2
48	Task Attention Facilitates Learning of Task-Irrelevant Stimuli. PLoS ONE, 2012, 7, e35946.	2.5	22
49	Monocular deprivation boosts long-term visual plasticity. Current Biology, 2012, 22, R291-R292.	3.9	13
50	Decoding Reveals Plasticity in V3A as a Result of Motion Perceptual Learning. PLoS ONE, 2012, 7, e44003.	2.5	37
51	Perceptual Learning Incepted by Decoded fMRI Neurofeedback Without Stimulus Presentation. Science, 2011, 334, 1413-1415.	12.6	422
52	Perceptual learning. Current Biology, 2010, 20, R46-R48.	3.9	56
53	Advances in visual perceptual learning and plasticity. Nature Reviews Neuroscience, 2010, 11, 53-60.	10.2	356
54	Perceptual learning, aging, and improved visual performance in early stages of visual processing. Journal of Vision, 2010, 10, 4-4.	0.3	62

4

#	Article	IF	CITATIONS
55	Temporally Extended Dopamine Responses to Perceptually Demanding Reward-Predictive Stimuli. Journal of Neuroscience, 2010, 30, 10692-10702.	3.6	145
56	Perceptual learning rules based on reinforcers and attention. Trends in Cognitive Sciences, 2010, 14, 64-71.	7.8	241
57	When attention interrupts learning: Inhibitory effects of attention on TIPL. Vision Research, 2009, 49, 2586-2590.	1.4	37
58	Interference and feature specificity in visual perceptual learning. Vision Research, 2009, 49, 2611-2623.	1.4	52
59	The phenomenon of task-irrelevant perceptual learning. Vision Research, 2009, 49, 2604-2610.	1.4	132
60	Perceptual learning: Functions, mechanisms, and applications. Vision Research, 2009, 49, 2531-2534.	1.4	13
61	Location-Specific Cortical Activation Changes during Sleep after Training for Perceptual Learning. Current Biology, 2009, 19, 1278-1282.	3.9	120
62	Roles of attention in perceptual learning from perspectives of psychophysics and animal learning. Learning and Behavior, 2009, 37, 126-132.	1.0	33
63	Rewards Evoke Learning of Unconsciously Processed Visual Stimuli in Adult Humans. Neuron, 2009, 61, 700-707.	8.1	293
64	Selectiveness of the exposure-based perceptual learning: What to learn and what not to learn. Learning & Perception, 2009, 1, 89-98.	2.4	6
65	Task-irrelevant learning occurs only when the irrelevant feature is weak. Current Biology, 2008, 18, R516-R517.	3.9	100
66	Different Dynamics of Performance and Brain Activation in the Time Course of Perceptual Learning. Neuron, 2008, 57, 827-833.	8.1	280
67	Effect of spatial distance to the task stimulus on task-irrelevant perceptual learning of static Gabors. Journal of Vision, 2007, 7, 2.	0.3	40
68	Two cases requiring external reinforcement in perceptual learning. Journal of Vision, 2006, 6, 9.	0.3	54
69	Greater Disruption Due to Failure of Inhibitory Control on an Ambiguous Distractor. Science, 2006, 314, 1786-1788.	12.6	184
70	Requirement for high-level processing in subliminal learning. Current Biology, 2005, 15, R753-R755.	3.9	47
71	Separate Processing of Different Global-Motion Structures in Visual Cortex Is Revealed by fMRI. Current Biology, 2005, 15, 2027-2032.	3.9	56
72	Task-specific disruption of perceptual learning. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14895-14900.	7.1	104

#	Article	IF	CITATIONS
73	A unified model for perceptual learning. Trends in Cognitive Sciences, 2005, 9, 329-334.	7.8	303
74	Seeing what is not there shows the costs of perceptual learning. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9080-9085.	7.1	44
75	Task-Dependent Changes of the Psychophysical Motion-Tuning Functions in the Course of Perceptual Learning. Perception, 2004, 33, 1139-1147.	1.2	20
76	Is subliminal learning really passive?. Nature, 2003, 422, 36-36.	27.8	261
77	Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task. Nature Neuroscience, 2002, 5, 1003-1009.	14.8	188
78	Perceptual learning without perception. Nature, 2001, 413, 844-848.	27.8	520
79	Attention-Regulated Activity in Human Primary Visual Cortex. Journal of Neurophysiology, 1998, 79, 2218-2221.	1.8	133