Hui Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4579362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Interfield Strength Agreement of Left Ventricular Strain Measurements at 1. <scp>5ÂT</scp> and <scp>3ÂT</scp> Using Cardiac <scp>MRI</scp> Feature Tracking. Journal of Magnetic Resonance Imaging, 2023, 57, 1250-1261.	3.4	6
2	Evaluation of Hepatic Iron Overload Using a Contemporary 0. <scp>55 T MRI</scp> System. Journal of Magnetic Resonance Imaging, 2022, 55, 1855-1863.	3.4	4
3	Automated Inâ€Line Artificial Intelligence Measured Global Longitudinal Shortening and Mitral Annular Plane Systolic Excursion: Reproducibility and Prognostic Significance. Journal of the American Heart Association, 2022, 11, e023849.	3.7	11
4	Quantitative Myocardial Perfusion Predicts Outcomes in Patients With Prior SurgicalÂRevascularization. Journal of the American College of Cardiology, 2022, 79, 1141-1151.	2.8	10
5	Coronary microvascular function and visceral adiposity in patients with normal body weight and type 2 diabetes. Obesity, 2022, 30, 1079-1090.	3.0	7
6	Study protocol: MyoFit46—the cardiac sub-study of the MRC National Survey of Health and Development. BMC Cardiovascular Disorders, 2022, 22, 140.	1.7	4
7	Imaging gravity-induced lung water redistribution with automated inline processing at 0.55 T cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2022, 24, .	3.3	4
8	Quantitative cardiovascular magnetic resonance myocardial perfusion mapping to assess hyperaemic response to adenosine stress. European Heart Journal Cardiovascular Imaging, 2021, 22, 273-281.	1.2	15
9	Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. European Heart Journal, 2021, 42, 1866-1878.	2.2	274
10	A comparison of standard and high dose adenosine protocols in routine vasodilator stress cardiovascular magnetic resonance: dosage affects hyperaemic myocardial blood flow in patients with severe left ventricular systolic impairment. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 37.	3.3	11
11	Prognostic Value of Pulmonary Transit Time and Pulmonary Blood Volume Estimation Using Myocardial PerfusionÂCMR. JACC: Cardiovascular Imaging, 2021, 14, 2107-2119.	5.3	18
12	Use of quantitative cardiovascular magnetic resonance myocardial perfusion mapping for characterization of ischemia in patients with left internal mammary coronary artery bypass grafts. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 82.	3.3	6
13	Myocardial Perfusion Defects in Hypertrophic Cardiomyopathy Mutation Carriers. Journal of the American Heart Association, 2021, 10, e020227.	3.7	15
14	Evaluation of Myocardial Infarction by Cardiovascular Magnetic Resonance at 0.55-T Compared to 1.5-T. JACC: Cardiovascular Imaging, 2021, 14, 1866-1868.	5.3	9
15	Landmark Detection in Cardiac MRI by Using a Convolutional Neural Network. Radiology: Artificial Intelligence, 2021, 3, e200197.	5.8	24
16	Myocardial Perfusion Imaging After Severe COVID-19 Infection Demonstrates Regional Ischemia Rather Than Global Blood Flow Reduction. Frontiers in Cardiovascular Medicine, 2021, 8, 764599.	2.4	9
17	Automatic inâ€line quantitative myocardial perfusion mapping: Processing algorithm and implementation. Magnetic Resonance in Medicine, 2020, 83, 712-730.	3.0	27
18	COVID-19. Circulation, 2020, 142, 1120-1122.	1.6	126

Ниі Хиє

#	Article	IF	CITATIONS
19	Automated Inline Analysis of Myocardial Perfusion MRI with Deep Learning. Radiology: Artificial Intelligence, 2020, 2, e200009.	5.8	32
20	A comparison of cine CMR imaging at 0.55 T and 1.5 T. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 37.	3.3	25
21	Automated detection of left ventricle in arterial input function images for inline perfusion mapping using deep learning: A study of 15,000 patients. Magnetic Resonance in Medicine, 2020, 84, 2788-2800.	3.0	19
22	Inline perfusion mapping provides insights into the disease mechanism in hypertrophic cardiomyopathy. Heart, 2020, 106, 824-829.	2.9	26
23	Females have higher myocardial perfusion, blood volume and extracellular volume compared to males – an adenosine stress cardiovascular magnetic resonance study. Scientific Reports, 2020, 10, 10380.	3.3	39
24	The Prognostic Significance of Quantitative Myocardial Perfusion: An Artificial Intelligence Based Approach Using Perfusion Mapping. Circulation, 2020, 141, 1282-1291.	1.6	100
25	Quantitative Myocardial Perfusion in Fabry Disease. Circulation: Cardiovascular Imaging, 2019, 12, e008872.	2.6	32
26	Opportunities in Interventional and Diagnostic Imaging by Using High-Performance Low-Field-Strength MRI. Radiology, 2019, 293, 384-393.	7.3	224
27	Automated Pixel-Wise Quantitative Myocardial Perfusion Mapping by CMRÂtoÂDetect Obstructive Coronary Artery Disease and Coronary Microvascular Dysfunction. JACC: Cardiovascular Imaging, 2019, 12, 1958-1969.	5.3	140
28	Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 48.	3.3	54
29	ISMRM Raw data format: A proposed standard for MRI raw datasets. Magnetic Resonance in Medicine, 2017, 77, 411-421.	3.0	59
30	Realâ€ŧime distortion correction of spiral and echo planar images using the gradient system impulse response function. Magnetic Resonance in Medicine, 2016, 75, 2278-2285.	3.0	56
31	Nonlinear myocardial perfusion imaging with motion corrected reconstruction: validation via quantitative flow mapping. Journal of Cardiovascular Magnetic Resonance, 2016, 18, O8.	3.3	1
32	Two RR myocardial perfusion acquisition achieves unbiased Myocardial Blood Flow (MBF) estimates. Journal of Cardiovascular Magnetic Resonance, 2016, 18, W12.	3.3	2
33	Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 43.	3.3	185
34	Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 78.	3.3	110
35	Distributed MRI reconstruction using gadgetron-based cloud computing. Magnetic Resonance in Medicine, 2015, 73, 1015-1025.	3.0	50
36	Phaseâ€sensitive inversion recovery for myocardial <i>T</i> ₁ mapping with motion correction and parametric fitting. Magnetic Resonance in Medicine, 2013, 69, 1408-1420.	3.0	90

Ηυι Χυε

#	Article	IF	CITATIONS
37	Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 61.	3.3	223
38	Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magnetic Resonance in Medicine, 2012, 67, 1644-1655.	3.0	187
39	Unsupervised Inline Analysis of Cardiac Perfusion MRI. Lecture Notes in Computer Science, 2009, 12, 741-749.	1.3	31
40	Evaluation of Rigid and Non-rigid Motion Compensation of Cardiac Perfusion MRI. Lecture Notes in Computer Science, 2008, 11, 35-43.	1.3	17