
Paul S Mischel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4578730/publications.pdf Version: 2024-02-01

DALLI S MISCHEL

#	Article	IF	CITATIONS
1	Extrachromosomal DNA: An Emerging Hallmark in Human Cancer. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 367-386.	22.4	44
2	Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA. Nature, 2022, 602, 510-517.	27.8	60
3	The metabolomic landscape plays a critical role in glioma oncogenesis. Cancer Science, 2022, 113, 1555-1563.	3.9	12
4	Extrachromosomal DNA in Cancer. Annual Review of Genomics and Human Genetics, 2022, 23, 29-52.	6.2	16
5	Extrachromosomal DNA (ecDNA) in cancer pathogenesis. Current Opinion in Genetics and Development, 2021, 66, 78-82.	3.3	29
6	Protein Acetylation at the Interface of Genetics, Epigenetics and Environment in Cancer. Metabolites, 2021, 11, 216.	2.9	19
7	Loss of polycomb repressive complex 1 activity and chromosomal instability drive uveal melanoma progression. Nature Communications, 2021, 12, 5402.	12.8	34
8	BAP1 methylation: a prognostic marker of uveal melanoma metastasis. Npj Precision Oncology, 2021, 5, 89.	5.4	7
9	Extrachromosomal DNA in HPV-Mediated Oropharyngeal Cancer Drives Diverse Oncogene Transcription. Clinical Cancer Research, 2021, 27, 6772-6786.	7.0	20
10	Targeting glioblastoma signaling and metabolism with a re-purposed brain-penetrant drug. Cell Reports, 2021, 37, 109957.	6.4	38
11	ecDNA hubs drive cooperative intermolecular oncogene expression. Nature, 2021, 600, 731-736.	27.8	123
12	Amplification of the Mutation-Carrying BRCA2 Allele Promotes RAD51 Loading and PARP Inhibitor Resistance in the Absence of Reversion Mutations. Molecular Cancer Therapeutics, 2020, 19, 602-613.	4.1	20
13	Altered cellular metabolism in gliomas — an emerging landscape of actionable co-dependency targets. Nature Reviews Cancer, 2020, 20, 57-70.	28.4	187
14	AmpliconReconstructor integrates NGS and optical mapping to resolve the complex structures of focal amplifications. Nature Communications, 2020, 11, 4374.	12.8	49
15	Same Script, Different Cast: Different Cell Origins Shape Molecular Features and Therapeutic Response in Glioblastoma. Cancer Cell, 2020, 38, 311-313.	16.8	4
16	Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nature Genetics, 2020, 52, 891-897.	21.4	273
17	Dual Regulation of Histone Methylation by mTOR Complexes Controls Glioblastoma Tumor Cell Growth via EZH2 and SAM. Molecular Cancer Research, 2020, 18, 1142-1152.	3.4	25
18	mTOR complex 2 is an integrator of cancer metabolism and epigenetics. Cancer Letters, 2020, 478, 1-7.	7.2	27

#	Article	IF	CITATIONS
19	Codependency of Metabolism and Epigenetics Drives Cancer Progression: A Review. Acta Histochemica Et Cytochemica, 2020, 53, 1-10.	1.6	23
20	Longitudinal assessment of tumor development using cancer avatars derived from genetically engineered pluripotent stem cells. Nature Communications, 2020, 11, 550.	12.8	45
21	Breast cancer treatment and its effects on aging. Journal of Geriatric Oncology, 2019, 10, 346-355.	1.0	51
22	Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Science Translational Medicine, 2019, 11, .	12.4	112
23	IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma. Nature Cell Biology, 2019, 21, 1003-1014.	10.3	107
24	Acyl-CoA-Binding Protein Fuels Gliomagenesis. Cell Metabolism, 2019, 30, 229-230.	16.2	11
25	Oncogene Amplification in Growth Factor Signaling Pathways Renders Cancers Dependent on Membrane Lipid Remodeling. Cell Metabolism, 2019, 30, 525-538.e8.	16.2	130
26	EcSeg: Semantic Segmentation of Metaphase Images Containing Extrachromosomal DNA. IScience, 2019, 21, 428-435.	4.1	30
27	mTORC2 links growth factor signaling with epigenetic regulation of iron metabolism in glioblastoma. Journal of Biological Chemistry, 2019, 294, 19740-19751.	3.4	23
28	Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nature Communications, 2019, 10, 392.	12.8	164
29	Glioma Stem Cell–Specific Superenhancer Promotes Polyunsaturated Fatty-Acid Synthesis to Support EGFR Signaling. Cancer Discovery, 2019, 9, 1248-1267.	9.4	120
30	NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling. Nature, 2019, 569, 570-575.	27.8	153
31	A cell type-selective apoptosis-inducing small molecule for the treatment of brain cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6435-6440.	7.1	23
32	Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nature Reviews Cancer, 2019, 19, 283-288.	28.4	219
33	Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature, 2019, 575, 699-703.	27.8	343
34	Metabolic reprogramming in the pathogenesis of glioma: Update. Neuropathology, 2019, 39, 3-13.	1.2	38
35	ViFi: accurate detection of viral integration and mRNA fusion reveals indiscriminate and unregulated transcription in proximal genomic regions in cervical cancer. Nucleic Acids Research, 2018, 46, 3309-3325.	14.5	47
36	Targeting epidermal growth factor receptor coâ€dependent signaling pathways in glioblastoma. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1398.	6.6	17

#	Article	IF	CITATIONS
37	mTOR Complexes as a Nutrient Sensor for Driving Cancer Progression. International Journal of Molecular Sciences, 2018, 19, 3267.	4.1	30
38	Targeting cancer's metabolic co-dependencies: A landscape shaped by genotype and tissue context. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 76-87.	7.4	25
39	Activation of ERBB4 in Glioblastoma Can Contribute to Increased Tumorigenicity and Influence Therapeutic Response. Cancers, 2018, 10, 243.	3.7	18
40	Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature, 2017, 543, 122-125.	27.8	530
41	mTORC2 Regulates Amino Acid Metabolism in Cancer by Phosphorylation of the Cystine-Glutamate Antiporter xCT. Molecular Cell, 2017, 67, 128-138.e7.	9.7	147
42	Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nature Medicine, 2017, 23, 1342-1351.	30.7	79
43	Glioblastoma cellular cross-talk converges on NF-κB to attenuate EGFR inhibitor sensitivity. Genes and Development, 2017, 31, 1212-1227.	5.9	53
44	Precision cancer therapy is impacted by oncogene-dependent epigenome remodeling. Npj Precision Oncology, 2017, 1, 1.	5.4	90
45	Glut3 Addiction Is a Druggable Vulnerability for a Molecularly Defined Subpopulation of Glioblastoma. Cancer Cell, 2017, 32, 856-868.e5.	16.8	121
46	Molecular and Genetic Determinants of Glioma Cell Invasion. International Journal of Molecular Sciences, 2017, 18, 2609.	4.1	28
47	Old player, new partner: EGFRvIII and cytokine receptor signaling in glioblastoma. Nature Neuroscience, 2016, 19, 765-767.	14.8	14
48	Single-Cell Phosphoproteomics Resolves Adaptive Signaling Dynamics and Informs Targeted Combination Therapy in Glioblastoma. Cancer Cell, 2016, 29, 563-573.	16.8	140
49	Molecular classification of gliomas. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 134, 97-120.	1.8	90
50	An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain Cancers. Cancer Cell, 2016, 30, 683-693.	16.8	237
51	mTORC2 activity in brain cancer: Extracellular nutrients are required to maintain oncogenic signaling. BioEssays, 2016, 38, 839-844.	2.5	16
52	PINK1 Is a Negative Regulator of Growth and the Warburg Effect in Glioblastoma. Cancer Research, 2016, 76, 4708-4719.	0.9	107
53	Cancer metabolism as a central driving force of glioma pathogenesis. Brain Tumor Pathology, 2016, 33, 161-168.	1.7	38
54	Single-cell analysis tools for drug discovery and development. Nature Reviews Drug Discovery, 2016, 15, 204-216.	46.4	407

#	Article	IF	CITATIONS
55	AshwaMAX and Withaferin A inhibits gliomas in cellular and murine orthotopic models. Journal of Neuro-Oncology, 2016, 126, 253-264.	2.9	34
56	Shared Intelligence: A Patient-Derived, Deeply Characterized Glioblastoma Cell Line Resource. EBioMedicine, 2015, 2, 1274-1275.	6.1	0
57	A phase I doseâ€escalation study to assess safety, tolerability, pharmacokinetics, and preliminary efficacy of the dual mTORC1/mTORC2 kinase inhibitor CCâ€223 in patients with advanced solid tumors or multiple myeloma. Cancer, 2015, 121, 3481-3490.	4.1	68
58	Significance of filamin A in mTORC2 function in glioblastoma. Molecular Cancer, 2015, 14, 127.	19.2	52
59	mTORC2 and Metabolic Reprogramming in GBM: at the Interface of Genetics and Environment. Brain Pathology, 2015, 25, 755-759.	4.1	26
60	Metabolic Reprogramming in Brain Cancer: A Coordinated Effort. Brain Pathology, 2015, 25, 753-754.	4.1	5
61	Mutational landscape of gastric adenocarcinoma in Chinese: Implications for prognosis and therapy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1107-1112.	7.1	137
62	A Urokinase Receptor–Bim Signaling Axis Emerges during EGFR Inhibitor Resistance in Mutant EGFR Glioblastoma. Cancer Research, 2015, 75, 394-404.	0.9	48
63	Glucose-dependent acetylation of Rictor promotes targeted cancer therapy resistance. Proceedings of the United States of America, 2015, 112, 9406-9411.	7.1	96
64	Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nature Reviews Cancer, 2015, 15, 302-310.	28.4	305
65	EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. Molecular Cell, 2015, 60, 307-318.	9.7	161
66	Brain Malignancy Steering Committee clinical trials planning workshop: Report from the Targeted Therapies Working Group. Neuro-Oncology, 2015, 17, 180-188.	1.2	28
67	Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. Journal of Clinical Investigation, 2015, 125, 1591-1602.	8.2	202
68	mTORC2 dictates Warburg effect and drug resistance. Cell Cycle, 2014, 13, 1053-1054.	2.6	16
69	NT-39 * GLUTAMINASE-MEDIATED METABOLIC PATHWAY INVOLVES GLIOBLASTOMA RESISTANCE TO mTOR-TARGETED THERAPIES. Neuro-Oncology, 2014, 16, v167-v167.	1.2	2
70	Epithelial Membrane Protein-2 (EMP2) Activates Src Protein and Is a Novel Therapeutic Target for Glioblastoma. Journal of Biological Chemistry, 2014, 289, 13974-13985.	3.4	33
71	Glioblastoma: From Molecular Pathology to Targeted Treatment. Annual Review of Pathology: Mechanisms of Disease, 2014, 9, 1-25.	22.4	427
72	Targeted Therapy Resistance Mediated by Dynamic Regulation of Extrachromosomal Mutant EGFR DNA. Science, 2014, 343, 72-76.	12.6	460

#	Article	IF	CITATIONS
73	Tumor-Suppressive miR148a Is Silenced by CpG Island Hypermethylation in <i>IDH1</i> -Mutant Gliomas. Clinical Cancer Research, 2014, 20, 5808-5822.	7.0	30
74	Silencing of protein kinase D2 induces glioma cell senescence via p53-dependent and -independent pathways. Neuro-Oncology, 2014, 16, 933-945.	1.2	25
75	Greater Than the Sum of Its Parts: Single-Nucleus Sequencing Identifies Convergent Evolution of Independent <i>EGFR</i> Mutants in GBM. Cancer Discovery, 2014, 4, 876-878.	9.4	4
76	mTORC2 in the center of cancer metabolic reprogramming. Trends in Endocrinology and Metabolism, 2014, 25, 364-373.	7.1	110
77	Targeting SREBP-1-driven Lipid Metabolism to Treat Cancer. Current Pharmaceutical Design, 2014, 20, 2619-2626.	1.9	228
78	Emerging function of mTORC2 as a core regulator in glioblastoma: metabolic reprogramming and drug resistance. Cancer Biology and Medicine, 2014, 11, 255-63.	3.0	44
79	Pilot Study on "Pericytic Mimicry―and Potential Embryonic/Stem Cell Properties of Angiotropic Melanoma Cells Interacting with the Abluminal Vascular Surface. Cancer Microenvironment, 2013, 6, 19-29.	3.1	52
80	mTOR Complex 2 Controls Glycolytic Metabolism in Glioblastoma through FoxO Acetylation and Upregulation of c-Myc. Cell Metabolism, 2013, 18, 726-739.	16.2	351
81	The mTOR Kinase Inhibitors, CC214-1 and CC214-2, Preferentially Block the Growth of EGFRvIII-Activated Glioblastomas. Clinical Cancer Research, 2013, 19, 5722-5732.	7.0	46
82	A tale of two approaches: complementary mechanisms of cytotoxic and targeted therapy resistance may inform next-generation cancer treatments. Carcinogenesis, 2013, 34, 725-738.	2.8	86
83	De-Repression of <i>PDGFRÎ²</i> Transcription Promotes Acquired Resistance to EGFR Tyrosine Kinase Inhibitors in Glioblastoma Patients. Cancer Discovery, 2013, 3, 534-547.	9.4	126
84	Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nature Genetics, 2013, 45, 253-261.	21.4	324
85	An Essential Requirement for the SCAP/SREBP Signaling Axis to Protect Cancer Cells from Lipotoxicity. Cancer Research, 2013, 73, 2850-2862.	0.9	148
86	LKB1 Inactivation Dictates Therapeutic Response of Non-Small Cell Lung Cancer to the Metabolism Drug Phenformin. Cancer Cell, 2013, 23, 143-158.	16.8	489
87	EGFR Mutation-Induced Alternative Splicing of Max Contributes to Growth of Clycolytic Tumors in Brain Cancer. Cell Metabolism, 2013, 17, 1000-1008.	16.2	130
88	Lyophilized brain tumor specimens can be used for histologic, nucleic acid, and protein analyses after 1 year of room temperature storage. Journal of Neuro-Oncology, 2013, 113, 365-373.	2.9	23
89	On the role of 25-hydroxycholesterol synthesis by glioblastoma cell lines. Implications for chemotactic monocyte recruitment. Experimental Cell Research, 2013, 319, 1828-1838.	2.6	61
90	Fast Metabolic Response to Drug Intervention Through Analysis on a Miniaturized, Highly Integrated Molecular Imaging System. Journal of Nuclear Medicine, 2013, 54, 1820-1824.	5.0	10

#	Article	IF	CITATIONS
91	Combined analysis of O6-methylguanine-DNA methyltransferase protein expression and promoter methylation provides optimized prognostication of glioblastoma outcome. Neuro-Oncology, 2013, 15, 370-381.	1.2	97
92	A Kinome-Wide RNAi Screen in Drosophila Glia Reveals That the RIO Kinases Mediate Cell Proliferation and Survival through TORC2-Akt Signaling in Glioblastoma. PLoS Genetics, 2013, 9, e1003253.	3.5	114
93	Hypoxia induces a phase transition within a kinase signaling network in cancer cells. Proceedings of the United States of America, 2013, 110, E1352-60.	7.1	61
94	Arsenic reverses glioblastoma resistance to mTOR-targeted therapies. Cell Cycle, 2013, 12, 1473-1474.	2.6	9
95	PML mediates glioblastoma resistance to mammalian target of rapamycin (mTOR)-targeted therapies. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4339-4344.	7.1	60
96	When Is Hub Gene Selection Better than Standard Meta-Analysis?. PLoS ONE, 2013, 8, e61505.	2.5	243
97	Protective Properties of Radio-Chemoresistant Glioblastoma Stem Cell Clones Are Associated with Metabolic Adaptation to Reduced Glucose Dependence. PLoS ONE, 2013, 8, e80397.	2.5	48
98	Tumor pharmacokinetics (PK) and pharmacodynamics (PD) of SAR245409 (XL765) and SAR245408 (XL147) administered as single agents to patients with recurrent glioblastoma (GBM): An Ivy Foundation early-phase clinical trials consortium study Journal of Clinical Oncology, 2013, 31, 2012-2012.	1.6	19
99	Suppression of G-protein–Coupled Receptor Kinase 3 Expression Is a Feature of Classical GBM That Is Required for Maximal Growth. Molecular Cancer Research, 2012, 10, 156-166.	3.4	35
100	Acridine Yellow G Blocks Glioblastoma Growth via Dual Inhibition of Epidermal Growth Factor Receptor and Protein Kinase C Kinases. Journal of Biological Chemistry, 2012, 287, 6113-6127.	3.4	11
101	Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the PTEN tumor suppressor at tyrosine 240. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14164-14169.	7.1	97
102	Discovery in Context: Leveraging Multidimensional Glioblastoma Datasets to Identify Targetable Regulatory Networks: Figure 1 Cancer Discovery, 2012, 2, 676-678.	9.4	3
103	Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Molecular Systems Biology, 2012, 8, 589.	7.2	168
104	Identification of Retinol Binding Protein 1 Promoter Hypermethylation in Isocitrate Dehydrogenase 1 and 2 Mutant Gliomas. Journal of the National Cancer Institute, 2012, 104, 1458-1469.	6.3	56
105	Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 419-424.	7.1	300
106	Differential Sensitivity of Glioma- versus Lung Cancer–Specific EGFR Mutations to EGFR Kinase Inhibitors. Cancer Discovery, 2012, 2, 458-471.	9.4	304
107	Longitudinal evaluation of MPIO-labeled stem cell biodistribution in glioblastoma using high resolution and contrast-enhanced MR imaging at 14.1Tesla. Neuro-Oncology, 2012, 14, 1050-1061.	1.2	15
108	HOT Models in Flux: Mitochondrial Glucose Oxidation Fuels Glioblastoma Growth. Cell Metabolism, 2012, 15, 789-790.	16.2	10

#	Article	IF	CITATIONS
109	Determining PTEN Functional Status by Network Component Deduced Transcription Factor Activities. PLoS ONE, 2012, 7, e31053.	2.5	10
110	RNA-Binding Protein Musashi1 Modulates Glioma Cell Growth through the Post-Transcriptional Regulation of Notch and PI3 Kinase/Akt Signaling Pathways. PLoS ONE, 2012, 7, e33431.	2.5	79
111	mTOR Inhibitors Synergize on Regression, Reversal of Gene Expression, and Autophagy in Hepatocellular Carcinoma. Science Translational Medicine, 2012, 4, 139ra84.	12.4	88
112	Phase I study of AEE788, a novel multitarget inhibitor of ErbB- and VEGF-receptor-family tyrosine kinases, in recurrent glioblastoma patients. Cancer Chemotherapy and Pharmacology, 2012, 69, 1507-1518.	2.3	59
113	Quantification of edema reduction using differential quantitative T2 (DQT2) relaxometry mapping in recurrent glioblastoma treated with bevacizumab. Journal of Neuro-Oncology, 2012, 106, 111-119.	2.9	67
114	Alkylpurine–DNA–N-glycosylase confers resistance to temozolomide in xenograft models of glioblastoma multiforme and is associated with poor survival in patients. Journal of Clinical Investigation, 2012, 122, 253-266.	8.2	140
115	An LXR Agonist Promotes Glioblastoma Cell Death through Inhibition of an EGFR/AKT/SREBP-1/LDLR–Dependent Pathway. Cancer Discovery, 2011, 1, 442-456.	9.4	346
116	Metabolic state of glioma stem cells and nontumorigenic cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16062-16067.	7.1	433
117	CD44v6 Regulates Growth of Brain Tumor Stem Cells Partially through the AKT-Mediated Pathway. PLoS ONE, 2011, 6, e24217.	2.5	115
118	Reversing Melanoma Cross-Resistance to BRAF and MEK Inhibitors by Co-Targeting the AKT/mTOR Pathway. PLoS ONE, 2011, 6, e28973.	2.5	196
119	New Strategies in the Molecular Targeting of Glioblastoma: How Do You Hit a Moving Target?. Clinical Cancer Research, 2011, 17, 6-11.	7.0	24
120	Evidence for Sequenced Molecular Evolution of <i>IDH1</i> Mutant Glioblastoma From a Distinct Cell of Origin. Journal of Clinical Oncology, 2011, 29, 4482-4490.	1.6	420
121	Quantitative volumetric analysis of conventional MRI response in recurrent glioblastoma treated with bevacizumab. Neuro-Oncology, 2011, 13, 401-409.	1.2	95
122	Graded functional diffusion map-defined characteristics of apparent diffusion coefficients predict overall survival in recurrent glioblastoma treated with bevacizumab. Neuro-Oncology, 2011, 13, 1151-1161.	1.2	69
123	A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas. Journal of Experimental Medicine, 2011, 208, 689-702.	8.5	77
124	Siomycin A targets brain tumor stem cells partially through a MELK-mediated pathway. Neuro-Oncology, 2011, 13, 622-634.	1.2	63
125	Oncogenic EGFR Signaling Activates an mTORC2–NF-κB Pathway That Promotes Chemotherapy Resistance. Cancer Discovery, 2011, 1, 524-538.	9.4	275
126	Autocrine Endothelin-3/Endothelin Receptor B Signaling Maintains Cellular and Molecular Properties of Glioblastoma Stem Cells. Molecular Cancer Research, 2011, 9, 1668-1685.	3.4	38

#	ARTICLE	IF	CITATIONS
127	Musashi1 Cooperates in Abnormal Cell Lineage Protein 28 (Lin28)-mediated Let-7 Family MicroRNA Biogenesis in Early Neural Differentiation. Journal of Biological Chemistry, 2011, 286, 16121-16130.	3.4	71
128	Activation of Src induces mitochondrial localisation of de2-7EGFR (EGFRvIII) in glioma cells: implications for glucose metabolism. Journal of Cell Science, 2011, 124, 2938-2950.	2.0	35
129	Charting the course across the blood-brain barrier. Journal of Clinical Investigation, 2011, 121, 31-33.	8.2	34
130	Lost â€" and found â€" in translation. Journal of Clinical Investigation, 2011, 121, 3357-3359.	8.2	5
131	Genomic Landscape of Meningiomas. Brain Pathology, 2010, 20, 751-762.	4.1	124
132	Stem cell associated gene expression in glioblastoma multiforme: relationship to survival and the subventricular zone. Journal of Neuro-Oncology, 2010, 96, 359-367.	2.9	86
133	Clinical outcome in pediatric glial and embryonal brain tumors correlates with in vitro multiâ€passageable neurosphere formation. Pediatric Blood and Cancer, 2010, 55, 644-651.	1.5	41
134	Somatic mutations of the Parkinson's disease–associated gene PARK2 in glioblastoma and other human malignancies. Nature Genetics, 2010, 42, 77-82.	21.4	336
135	Update and developments in the treatment of glioblastoma multiforme – focus on bevacizumab. Pharmacogenomics and Personalized Medicine, 2010, 3, 79.	0.7	4
136	A Microfluidic Platform for Systems Pathology: Multiparameter Single-Cell Signaling Measurements of Clinical Brain Tumor Specimens. Cancer Research, 2010, 70, 6128-6138.	0.9	106
137	The phosphatase and tensin homolog regulates epidermal growth factor receptor (EGFR) inhibitor response by targeting EGFR for degradation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6459-6464.	7.1	99
138	AMPK: A metabolic checkpoint that regulates the growth of EGFR activated glioblastomas. Cell Cycle, 2010, 9, 211-212.	2.6	29
139	mTOR signaling in glioblastoma: lessons learned from bench to bedside. Neuro-Oncology, 2010, 12, 882-889.	1.2	159
140	The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12932-12937.	7.1	208
141	Fyn and Src Are Effectors of Oncogenic Epidermal Growth Factor Receptor Signaling in Glioblastoma Patients. Cancer Research, 2009, 69, 6889-6898.	0.9	136
142	Striking the balance between PTEN and PDK1: it all depends on the cell context. Genes and Development, 2009, 23, 1699-1704.	5.9	19
143	The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9435-9440.	7.1	246
144	EGFR Signaling Through an Akt-SREBP-1–Dependent, Rapamycin-Resistant Pathway Sensitizes Glioblastomas to Antilipogenic Therapy. Science Signaling, 2009, 2, ra82.	3.6	282

#	Article	IF	CITATIONS
145	PTEN dosage is essential for neurofibroma development and malignant transformation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19479-19484.	7.1	102
146	Noninvasive Imaging of αVβ3 Function as a Predictor of the Antimigratory and Antiproliferative Effects of Dasatinib. Cancer Research, 2009, 69, 3173-3179.	0.9	48
147	Recurrent Glioblastoma Multiforme: ADC Histogram Analysis Predicts Response to Bevacizumab Treatment. Radiology, 2009, 252, 182-189.	7.3	317
148	An Unbiased Screen Identifies DEP-1 Tumor Suppressor as a Phosphatase Controlling EGFR Endocytosis. Current Biology, 2009, 19, 1788-1798.	3.9	109
149	Proteasomal and Genetic Inactivation of the NF1 Tumor Suppressor in Gliomagenesis. Cancer Cell, 2009, 16, 44-54.	16.8	132
150	Targeted Therapy for Malignant Glioma Patients: Lessons Learned and the Road Ahead. Neurotherapeutics, 2009, 6, 500-512.	4.4	78
151	A pilot study of everolimus and gefitinib in the treatment of recurrent glioblastoma (GBM). Journal of Neuro-Oncology, 2009, 92, 99-105.	2.9	160
152	Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors. Journal of Neuro-Oncology, 2009, 94, 1-19.	2.9	111
153	Neurosphere Formation Is an Independent Predictor of Clinical Outcome in Malignant Glioma. Stem Cells, 2009, 27, 980-987.	3.2	207
154	Maternal embryonic leucine zipper kinase is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells. Journal of Neuroscience Research, 2008, 86, 48-60.	2.9	144
155	Development of a Real-time RT-PCR Assay for Detecting EGFRvIII in Glioblastoma Samples. Clinical Cancer Research, 2008, 14, 488-493.	7.0	91
156	Phase I/II Trial of Erlotinib and Temozolomide With Radiation Therapy in the Treatment of Newly Diagnosed Glioblastoma Multiforme: North Central Cancer Treatment Group Study N0177. Journal of Clinical Oncology, 2008, 26, 5603-5609.	1.6	255
157	Deregulation of a STAT3-Interleukin 8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness. Journal of Neuroscience, 2008, 28, 5870-5878.	3.6	149
158	Anti-MHC Class I Antibody Activation of Proliferation and Survival Signaling in Murine Cardiac Allografts. Journal of Immunology, 2008, 180, 2214-2224.	0.8	94
159	Relationship between Gene Expression and Enhancement in Glioblastoma Multiforme: Exploratory DNA Microarray Analysis. Radiology, 2008, 249, 268-277.	7.3	146
160	Antitumor Activity of Rapamycin in a Phase I Trial for Patients with Recurrent PTEN-Deficient Glioblastoma. PLoS Medicine, 2008, 5, e8.	8.4	499
161	Relationship between Survival and Edema in Malignant Gliomas: Role of Vascular Endothelial Growth Factor and Neuronal Pentraxin 2. Clinical Cancer Research, 2007, 13, 2592-2598.	7.0	108
162	Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20007-20012.	7.1	927

#	Article	IF	CITATIONS
163	PTEN-Mediated Resistance to Epidermal Growth Factor Receptor Kinase Inhibitors. Clinical Cancer Research, 2007, 13, 378-381.	7.0	114
164	Lymphomatosis Cerebri Presenting as Rapidly Progressive Dementia. Neurologist, 2007, 13, 150-153.	0.7	29
165	High-throughput oncogene mutation profiling in human cancer. Nature Genetics, 2007, 39, 347-351.	21.4	927
166	Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nature Medicine, 2007, 13, 84-88.	30.7	1,177
167	Distinct Transcription Profiles of Primary and Secondary Glioblastoma Subgroups. Cancer Research, 2006, 66, 159-167.	0.9	182
168	New Roles for Galectins in Brain Tumors-From Prognostic Markers to Therapeutic Targets. Brain Pathology, 2006, 15, 124-132.	4.1	25
169	Using molecular information to guide brain tumor therapy. Nature Clinical Practice Neurology, 2006, 2, 232-233.	2.5	16
170	Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain. PLoS Medicine, 2006, 3, e485.	8.4	298
171	Primary Glioblastomas Express Mesenchymal Stem-Like Properties. Molecular Cancer Research, 2006, 4, 607-619.	3.4	215
172	Mammalian Target of Rapamycin Inhibition Promotes Response to Epidermal Growth Factor Receptor Kinase Inhibitors in PTEN-Deficient and PTEN-Intact Glioblastoma Cells. Cancer Research, 2006, 66, 7864-7869.	0.9	231
173	HDJ-2 as a Target for Radiosensitization of Glioblastoma Multiforme Cells by the Farnesyltransferase Inhibitor R115777 and the Role of the p53/p21 Pathway. Cancer Research, 2006, 66, 6756-6762.	0.9	57
174	Differential Induction of Glioblastoma Migration and Growth by Two Forms of Pleiotrophin. Journal of Biological Chemistry, 2005, 280, 26953-26964.	3.4	112
175	Dendritic Cell Vaccination in Glioblastoma Patients Induces Systemic and Intracranial T-cell Responses Modulated by the Local Central Nervous System Tumor Microenvironment. Clinical Cancer Research, 2005, 11, 5515-5525.	7.0	498
176	Robustness of gene expression profiling in glioma specimen samplings and derived cell lines. Molecular Brain Research, 2005, 136, 99-103.	2.3	31
177	Molecular Determinants of the Response of Glioblastomas to EGFR Kinase Inhibitors. New England Journal of Medicine, 2005, 353, 2012-2024.	27.0	1,376
178	MR imaging correlates of survival in patients with high-grade gliomas. American Journal of Neuroradiology, 2005, 26, 2466-74.	2.4	315
179	Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. Journal of Nuclear Medicine, 2005, 46, 945-52.	5.0	318
180	p53 disruption profoundly alters the response of human glioblastoma cells to DNA topoisomerase I inhibition. Oncogene, 2004, 23, 1283-1290.	5.9	67

#	Article	IF	CITATIONS
181	DNA-microarray analysis of brain cancer: molecular classification for therapy. Nature Reviews Neuroscience, 2004, 5, 782-792.	10.2	189
182	Gene Expression Profiling of Gliomas Strongly Predicts Survival. Cancer Research, 2004, 64, 6503-6510.	0.9	659
183	Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line. Laboratory Investigation, 2004, 84, 8-20.	3.7	51
184	Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene, 2003, 22, 2361-2373.	5.9	247
185	Gene expression profiling identifies molecular subtypes of gliomas. Oncogene, 2003, 22, 4918-4923.	5.9	264
186	Molecular Analysis of Glioblastoma: Pathway Profiling and Its Implications for Patient Therapy. Cancer Biology and Therapy, 2003, 2, 242-247.	3.4	57
187	Targeted Molecular Therapy of GBM. Brain Pathology, 2003, 13, 52-61.	4.1	201
188	Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo. Cancer Research, 2003, 63, 2742-6.	0.9	342
189	Nerve Growth Factor Signals via Preexisting TrkA Receptor Oligomers. Biophysical Journal, 2002, 83, 968-976.	0.5	43
190	Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype. Clinical Cancer Research, 2002, 8, 2894-901.	7.0	124
191	Hamartin and Tuberin Interaction With the G2/M Cyclin-Dependent Kinase CDK1 and Its Regulatory Cyclins A and B. Journal of Neuropathology and Experimental Neurology, 2001, 60, 711-723.	1.7	56
192	The Extracellular Domain of p75NTR Is Necessary to Inhibit Neurotrophin-3 Signaling through TrkA. Journal of Biological Chemistry, 2001, 276, 11294-11301.	3.4	76
193	Lymphomatosis cerebri Presenting as a Rapidly Progressive Dementia: Clinical, Neuroimaging and Pathologic Findings. Dementia and Geriatric Cognitive Disorders, 1999, 10, 152-157.	1.5	86
194	Cortical Dysplasia, Genetic Abnormalities and Neurocutaneous Syndromes. Developmental Neuroscience, 1999, 21, 248-259.	2.0	37
195	Bilateral neuropathologic changes in a child with hemimegalencephaly. Pediatric Neurology, 1997, 17, 344-349.	2.1	68
196	Cerebral Cortical Dysplasia Associated with Pediatric Epilepsy. Review of Neuropathologic Features and Proposal for a Grading System. Journal of Neuropathology and Experimental Neurology, 1995, 54, 137-153.	1.7	415
197	Coccidioidomycosis of the Central Nervous System: Neuropathological and Vasculopathic Manifestations and Clinical Correlates. Clinical Infectious Diseases, 1995, 20, 400-405.	5.8	82