
Paul S Mischel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4578730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Determinants of the Response of Glioblastomas to EGFR Kinase Inhibitors. New England Journal of Medicine, 2005, 353, 2012-2024.	27.0	1,376
2	Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nature Medicine, 2007, 13, 84-88.	30.7	1,177
3	Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20007-20012.	7.1	927
4	High-throughput oncogene mutation profiling in human cancer. Nature Genetics, 2007, 39, 347-351.	21.4	927
5	Gene Expression Profiling of Gliomas Strongly Predicts Survival. Cancer Research, 2004, 64, 6503-6510.	0.9	659
6	Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature, 2017, 543, 122-125.	27.8	530
7	Antitumor Activity of Rapamycin in a Phase I Trial for Patients with Recurrent PTEN-Deficient Glioblastoma. PLoS Medicine, 2008, 5, e8.	8.4	499
8	Dendritic Cell Vaccination in Glioblastoma Patients Induces Systemic and Intracranial T-cell Responses Modulated by the Local Central Nervous System Tumor Microenvironment. Clinical Cancer Research, 2005, 11, 5515-5525.	7.0	498
9	LKB1 Inactivation Dictates Therapeutic Response of Non-Small Cell Lung Cancer to the Metabolism Drug Phenformin. Cancer Cell, 2013, 23, 143-158.	16.8	489
10	Targeted Therapy Resistance Mediated by Dynamic Regulation of Extrachromosomal Mutant EGFR DNA. Science, 2014, 343, 72-76.	12.6	460
11	Metabolic state of glioma stem cells and nontumorigenic cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16062-16067.	7.1	433
12	Glioblastoma: From Molecular Pathology to Targeted Treatment. Annual Review of Pathology: Mechanisms of Disease, 2014, 9, 1-25.	22.4	427
13	Evidence for Sequenced Molecular Evolution of <i>IDH1</i> Mutant Glioblastoma From a Distinct Cell of Origin. Journal of Clinical Oncology, 2011, 29, 4482-4490.	1.6	420
14	Cerebral Cortical Dysplasia Associated with Pediatric Epilepsy. Review of Neuropathologic Features and Proposal for a Grading System. Journal of Neuropathology and Experimental Neurology, 1995, 54, 137-153.	1.7	415
15	Single-cell analysis tools for drug discovery and development. Nature Reviews Drug Discovery, 2016, 15, 204-216.	46.4	407
16	mTOR Complex 2 Controls Glycolytic Metabolism in Glioblastoma through FoxO Acetylation and Upregulation of c-Myc. Cell Metabolism, 2013, 18, 726-739.	16.2	351
17	An LXR Agonist Promotes Clioblastoma Cell Death through Inhibition of an EGFR/AKT/SREBP-1/LDLR–Dependent Pathway. Cancer Discovery, 2011, 1, 442-456.	9.4	346
18	Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature, 2019, 575, 699-703.	27.8	343

#	Article	IF	CITATIONS
19	Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo. Cancer Research, 2003, 63, 2742-6.	0.9	342
20	Somatic mutations of the Parkinson's disease–associated gene PARK2 in glioblastoma and other human malignancies. Nature Genetics, 2010, 42, 77-82.	21.4	336
21	Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nature Genetics, 2013, 45, 253-261.	21.4	324
22	Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. Journal of Nuclear Medicine, 2005, 46, 945-52.	5.0	318
23	Recurrent Glioblastoma Multiforme: ADC Histogram Analysis Predicts Response to Bevacizumab Treatment. Radiology, 2009, 252, 182-189.	7.3	317
24	MR imaging correlates of survival in patients with high-grade gliomas. American Journal of Neuroradiology, 2005, 26, 2466-74.	2.4	315
25	Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nature Reviews Cancer, 2015, 15, 302-310.	28.4	305
26	Differential Sensitivity of Glioma- versus Lung Cancer–Specific EGFR Mutations to EGFR Kinase Inhibitors. Cancer Discovery, 2012, 2, 458-471.	9.4	304
27	Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 419-424.	7.1	300
28	Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain. PLoS Medicine, 2006, 3, e485.	8.4	298
29	EGFR Signaling Through an Akt-SREBP-1–Dependent, Rapamycin-Resistant Pathway Sensitizes Glioblastomas to Antilipogenic Therapy. Science Signaling, 2009, 2, ra82.	3.6	282
30	Oncogenic EGFR Signaling Activates an mTORC2–NF-κB Pathway That Promotes Chemotherapy Resistance. Cancer Discovery, 2011, 1, 524-538.	9.4	275
31	Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nature Genetics, 2020, 52, 891-897.	21.4	273
32	Gene expression profiling identifies molecular subtypes of gliomas. Oncogene, 2003, 22, 4918-4923.	5.9	264
33	Phase I/II Trial of Erlotinib and Temozolomide With Radiation Therapy in the Treatment of Newly Diagnosed Glioblastoma Multiforme: North Central Cancer Treatment Group Study N0177. Journal of Clinical Oncology, 2008, 26, 5603-5609.	1.6	255
34	Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene, 2003, 22, 2361-2373.	5.9	247
35	The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9435-9440.	7.1	246
36	When Is Hub Gene Selection Better than Standard Meta-Analysis?. PLoS ONE, 2013, 8, e61505.	2.5	243

#	Article	IF	CITATIONS
37	An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain Cancers. Cancer Cell, 2016, 30, 683-693.	16.8	237
38	Mammalian Target of Rapamycin Inhibition Promotes Response to Epidermal Growth Factor Receptor Kinase Inhibitors in PTEN-Deficient and PTEN-Intact Glioblastoma Cells. Cancer Research, 2006, 66, 7864-7869.	0.9	231
39	Targeting SREBP-1-driven Lipid Metabolism to Treat Cancer. Current Pharmaceutical Design, 2014, 20, 2619-2626.	1.9	228
40	Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nature Reviews Cancer, 2019, 19, 283-288.	28.4	219
41	Primary Glioblastomas Express Mesenchymal Stem-Like Properties. Molecular Cancer Research, 2006, 4, 607-619.	3.4	215
42	The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12932-12937.	7.1	208
43	Neurosphere Formation Is an Independent Predictor of Clinical Outcome in Malignant Glioma. Stem Cells, 2009, 27, 980-987.	3.2	207
44	Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. Journal of Clinical Investigation, 2015, 125, 1591-1602.	8.2	202
45	Targeted Molecular Therapy of GBM. Brain Pathology, 2003, 13, 52-61.	4.1	201
46	Reversing Melanoma Cross-Resistance to BRAF and MEK Inhibitors by Co-Targeting the AKT/mTOR Pathway. PLoS ONE, 2011, 6, e28973.	2.5	196
47	DNA-microarray analysis of brain cancer: molecular classification for therapy. Nature Reviews Neuroscience, 2004, 5, 782-792.	10.2	189
48	Altered cellular metabolism in gliomas — an emerging landscape of actionable co-dependency targets. Nature Reviews Cancer, 2020, 20, 57-70.	28.4	187
49	Distinct Transcription Profiles of Primary and Secondary Glioblastoma Subgroups. Cancer Research, 2006, 66, 159-167.	0.9	182
50	Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Molecular Systems Biology, 2012, 8, 589.	7.2	168
51	Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nature Communications, 2019, 10, 392.	12.8	164
52	EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. Molecular Cell, 2015, 60, 307-318.	9.7	161
53	A pilot study of everolimus and gefitinib in the treatment of recurrent glioblastoma (GBM). Journal of Neuro-Oncology, 2009, 92, 99-105.	2.9	160
54	mTOR signaling in glioblastoma: lessons learned from bench to bedside. Neuro-Oncology, 2010, 12, 882-889.	1.2	159

#	Article	IF	CITATIONS
55	NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling. Nature, 2019, 569, 570-575.	27.8	153
56	Deregulation of a STAT3-Interleukin 8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness. Journal of Neuroscience, 2008, 28, 5870-5878.	3.6	149
57	An Essential Requirement for the SCAP/SREBP Signaling Axis to Protect Cancer Cells from Lipotoxicity. Cancer Research, 2013, 73, 2850-2862.	0.9	148
58	mTORC2 Regulates Amino Acid Metabolism in Cancer by Phosphorylation of the Cystine-Glutamate Antiporter xCT. Molecular Cell, 2017, 67, 128-138.e7.	9.7	147
59	Relationship between Gene Expression and Enhancement in Glioblastoma Multiforme: Exploratory DNA Microarray Analysis. Radiology, 2008, 249, 268-277.	7.3	146
60	Maternal embryonic leucine zipper kinase is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells. Journal of Neuroscience Research, 2008, 86, 48-60.	2.9	144
61	Single-Cell Phosphoproteomics Resolves Adaptive Signaling Dynamics and Informs Targeted Combination Therapy in Glioblastoma. Cancer Cell, 2016, 29, 563-573.	16.8	140
62	Alkylpurine–DNA–N-glycosylase confers resistance to temozolomide in xenograft models of glioblastoma multiforme and is associated with poor survival in patients. Journal of Clinical Investigation, 2012, 122, 253-266.	8.2	140
63	Mutational landscape of gastric adenocarcinoma in Chinese: Implications for prognosis and therapy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1107-1112.	7.1	137
64	Fyn and Src Are Effectors of Oncogenic Epidermal Growth Factor Receptor Signaling in Glioblastoma Patients. Cancer Research, 2009, 69, 6889-6898.	0.9	136
65	Proteasomal and Genetic Inactivation of the NF1 Tumor Suppressor in Gliomagenesis. Cancer Cell, 2009, 16, 44-54.	16.8	132
66	EGFR Mutation-Induced Alternative Splicing of Max Contributes to Growth of Glycolytic Tumors in Brain Cancer. Cell Metabolism, 2013, 17, 1000-1008.	16.2	130
67	Oncogene Amplification in Growth Factor Signaling Pathways Renders Cancers Dependent on Membrane Lipid Remodeling. Cell Metabolism, 2019, 30, 525-538.e8.	16.2	130
68	De-Repression of <i>PDGFRβ</i> Transcription Promotes Acquired Resistance to EGFR Tyrosine Kinase Inhibitors in Glioblastoma Patients. Cancer Discovery, 2013, 3, 534-547.	9.4	126
69	Genomic Landscape of Meningiomas. Brain Pathology, 2010, 20, 751-762.	4.1	124
70	Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype. Clinical Cancer Research, 2002, 8, 2894-901.	7.0	124
71	ecDNA hubs drive cooperative intermolecular oncogene expression. Nature, 2021, 600, 731-736.	27.8	123
72	Glut3 Addiction Is a Druggable Vulnerability for a Molecularly Defined Subpopulation of Glioblastoma. Cancer Cell, 2017, 32, 856-868.e5.	16.8	121

#	Article	IF	CITATIONS
73	Glioma Stem Cell–Specific Superenhancer Promotes Polyunsaturated Fatty-Acid Synthesis to Support EGFR Signaling. Cancer Discovery, 2019, 9, 1248-1267.	9.4	120
74	CD44v6 Regulates Growth of Brain Tumor Stem Cells Partially through the AKT-Mediated Pathway. PLoS ONE, 2011, 6, e24217.	2.5	115
75	PTEN-Mediated Resistance to Epidermal Growth Factor Receptor Kinase Inhibitors. Clinical Cancer Research, 2007, 13, 378-381.	7.0	114
76	A Kinome-Wide RNAi Screen in Drosophila Glia Reveals That the RIO Kinases Mediate Cell Proliferation and Survival through TORC2-Akt Signaling in Glioblastoma. PLoS Genetics, 2013, 9, e1003253.	3.5	114
77	Differential Induction of Glioblastoma Migration and Growth by Two Forms of Pleiotrophin. Journal of Biological Chemistry, 2005, 280, 26953-26964.	3.4	112
78	Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Science Translational Medicine, 2019, 11, .	12.4	112
79	Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors. Journal of Neuro-Oncology, 2009, 94, 1-19.	2.9	111
80	mTORC2 in the center of cancer metabolic reprogramming. Trends in Endocrinology and Metabolism, 2014, 25, 364-373.	7.1	110
81	An Unbiased Screen Identifies DEP-1 Tumor Suppressor as a Phosphatase Controlling EGFR Endocytosis. Current Biology, 2009, 19, 1788-1798.	3.9	109
82	Relationship between Survival and Edema in Malignant Gliomas: Role of Vascular Endothelial Growth Factor and Neuronal Pentraxin 2. Clinical Cancer Research, 2007, 13, 2592-2598.	7.0	108
83	PINK1 Is a Negative Regulator of Growth and the Warburg Effect in Glioblastoma. Cancer Research, 2016, 76, 4708-4719.	0.9	107
84	IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma. Nature Cell Biology, 2019, 21, 1003-1014.	10.3	107
85	A Microfluidic Platform for Systems Pathology: Multiparameter Single-Cell Signaling Measurements of Clinical Brain Tumor Specimens. Cancer Research, 2010, 70, 6128-6138.	0.9	106
86	PTEN dosage is essential for neurofibroma development and malignant transformation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19479-19484.	7.1	102
87	The phosphatase and tensin homolog regulates epidermal growth factor receptor (EGFR) inhibitor response by targeting EGFR for degradation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6459-6464.	7.1	99
88	Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the PTEN tumor suppressor at tyrosine 240. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14164-14169.	7.1	97
89	Combined analysis of O6-methylguanine-DNA methyltransferase protein expression and promoter methylation provides optimized prognostication of glioblastoma outcome. Neuro-Oncology, 2013, 15, 370-381.	1.2	97
90	Glucose-dependent acetylation of Rictor promotes targeted cancer therapy resistance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9406-9411.	7.1	96

#	Article	IF	CITATIONS
91	Quantitative volumetric analysis of conventional MRI response in recurrent glioblastoma treated with bevacizumab. Neuro-Oncology, 2011, 13, 401-409.	1.2	95
92	Anti-MHC Class I Antibody Activation of Proliferation and Survival Signaling in Murine Cardiac Allografts. Journal of Immunology, 2008, 180, 2214-2224.	0.8	94
93	Development of a Real-time RT-PCR Assay for Detecting EGFRvIII in Glioblastoma Samples. Clinical Cancer Research, 2008, 14, 488-493.	7.0	91
94	Molecular classification of gliomas. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 134, 97-120.	1.8	90
95	Precision cancer therapy is impacted by oncogene-dependent epigenome remodeling. Npj Precision Oncology, 2017, 1, 1.	5.4	90
96	mTOR Inhibitors Synergize on Regression, Reversal of Gene Expression, and Autophagy in Hepatocellular Carcinoma. Science Translational Medicine, 2012, 4, 139ra84.	12.4	88
97	Lymphomatosis cerebri Presenting as a Rapidly Progressive Dementia: Clinical, Neuroimaging and Pathologic Findings. Dementia and Geriatric Cognitive Disorders, 1999, 10, 152-157.	1.5	86
98	Stem cell associated gene expression in glioblastoma multiforme: relationship to survival and the subventricular zone. Journal of Neuro-Oncology, 2010, 96, 359-367.	2.9	86
99	A tale of two approaches: complementary mechanisms of cytotoxic and targeted therapy resistance may inform next-generation cancer treatments. Carcinogenesis, 2013, 34, 725-738.	2.8	86
100	Coccidioidomycosis of the Central Nervous System: Neuropathological and Vasculopathic Manifestations and Clinical Correlates. Clinical Infectious Diseases, 1995, 20, 400-405.	5.8	82
101	RNA-Binding Protein Musashi1 Modulates Glioma Cell Growth through the Post-Transcriptional Regulation of Notch and PI3 Kinase/Akt Signaling Pathways. PLoS ONE, 2012, 7, e33431.	2.5	79
102	Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nature Medicine, 2017, 23, 1342-1351.	30.7	79
103	Targeted Therapy for Malignant Glioma Patients: Lessons Learned and the Road Ahead. Neurotherapeutics, 2009, 6, 500-512.	4.4	78
104	A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas. Journal of Experimental Medicine, 2011, 208, 689-702.	8.5	77
105	The Extracellular Domain of p75NTR Is Necessary to Inhibit Neurotrophin-3 Signaling through TrkA. Journal of Biological Chemistry, 2001, 276, 11294-11301.	3.4	76
106	Musashi1 Cooperates in Abnormal Cell Lineage Protein 28 (Lin28)-mediated Let-7 Family MicroRNA Biogenesis in Early Neural Differentiation. Journal of Biological Chemistry, 2011, 286, 16121-16130.	3.4	71
107	Graded functional diffusion map-defined characteristics of apparent diffusion coefficients predict overall survival in recurrent glioblastoma treated with bevacizumab. Neuro-Oncology, 2011, 13, 1151-1161.	1.2	69
108	Bilateral neuropathologic changes in a child with hemimegalencephaly. Pediatric Neurology, 1997, 17, 344-349.	2.1	68

#	Article	IF	CITATIONS
109	A phase I doseâ€escalation study to assess safety, tolerability, pharmacokinetics, and preliminary efficacy of the dual mTORC1/mTORC2 kinase inhibitor CCâ€223 in patients with advanced solid tumors or multiple myeloma. Cancer, 2015, 121, 3481-3490.	4.1	68
110	p53 disruption profoundly alters the response of human glioblastoma cells to DNA topoisomerase I inhibition. Oncogene, 2004, 23, 1283-1290.	5.9	67
111	Quantification of edema reduction using differential quantitative T2 (DQT2) relaxometry mapping in recurrent glioblastoma treated with bevacizumab. Journal of Neuro-Oncology, 2012, 106, 111-119.	2.9	67
112	Siomycin A targets brain tumor stem cells partially through a MELK-mediated pathway. Neuro-Oncology, 2011, 13, 622-634.	1.2	63
113	On the role of 25-hydroxycholesterol synthesis by glioblastoma cell lines. Implications for chemotactic monocyte recruitment. Experimental Cell Research, 2013, 319, 1828-1838.	2.6	61
114	Hypoxia induces a phase transition within a kinase signaling network in cancer cells. Proceedings of the United States of America, 2013, 110, E1352-60.	7.1	61
115	PML mediates glioblastoma resistance to mammalian target of rapamycin (mTOR)-targeted therapies. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4339-4344.	7.1	60
116	Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA. Nature, 2022, 602, 510-517.	27.8	60
117	Phase I study of AEE788, a novel multitarget inhibitor of ErbB- and VEGF-receptor-family tyrosine kinases, in recurrent glioblastoma patients. Cancer Chemotherapy and Pharmacology, 2012, 69, 1507-1518.	2.3	59
118	Molecular Analysis of Glioblastoma: Pathway Profiling and Its Implications for Patient Therapy. Cancer Biology and Therapy, 2003, 2, 242-247.	3.4	57
119	HDJ-2 as a Target for Radiosensitization of Glioblastoma Multiforme Cells by the Farnesyltransferase Inhibitor R115777 and the Role of the p53/p21 Pathway. Cancer Research, 2006, 66, 6756-6762.	0.9	57
120	Hamartin and Tuberin Interaction With the G2/M Cyclin-Dependent Kinase CDK1 and Its Regulatory Cyclins A and B. Journal of Neuropathology and Experimental Neurology, 2001, 60, 711-723.	1.7	56
121	Identification of Retinol Binding Protein 1 Promoter Hypermethylation in Isocitrate Dehydrogenase 1 and 2 Mutant Gliomas. Journal of the National Cancer Institute, 2012, 104, 1458-1469.	6.3	56
122	Glioblastoma cellular cross-talk converges on NF-κB to attenuate EGFR inhibitor sensitivity. Genes and Development, 2017, 31, 1212-1227.	5.9	53
123	Pilot Study on "Pericytic Mimicry―and Potential Embryonic/Stem Cell Properties of Angiotropic Melanoma Cells Interacting with the Abluminal Vascular Surface. Cancer Microenvironment, 2013, 6, 19-29.	3.1	52
124	Significance of filamin A in mTORC2 function in glioblastoma. Molecular Cancer, 2015, 14, 127.	19.2	52
125	Breast cancer treatment and its effects on aging. Journal of Geriatric Oncology, 2019, 10, 346-355.	1.0	51
126	Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line. Laboratory Investigation, 2004, 84, 8-20.	3.7	51

#	Article	IF	CITATIONS
127	AmpliconReconstructor integrates NGS and optical mapping to resolve the complex structures of focal amplifications. Nature Communications, 2020, 11, 4374.	12.8	49
128	Noninvasive Imaging of αVβ3 Function as a Predictor of the Antimigratory and Antiproliferative Effects of Dasatinib. Cancer Research, 2009, 69, 3173-3179.	0.9	48
129	Protective Properties of Radio-Chemoresistant Glioblastoma Stem Cell Clones Are Associated with Metabolic Adaptation to Reduced Glucose Dependence. PLoS ONE, 2013, 8, e80397.	2.5	48
130	A Urokinase Receptor–Bim Signaling Axis Emerges during EGFR Inhibitor Resistance in Mutant EGFR Glioblastoma. Cancer Research, 2015, 75, 394-404.	0.9	48
131	ViFi: accurate detection of viral integration and mRNA fusion reveals indiscriminate and unregulated transcription in proximal genomic regions in cervical cancer. Nucleic Acids Research, 2018, 46, 3309-3325.	14.5	47
132	The mTOR Kinase Inhibitors, CC214-1 and CC214-2, Preferentially Block the Growth of EGFRvIII-Activated Glioblastomas. Clinical Cancer Research, 2013, 19, 5722-5732.	7.0	46
133	Longitudinal assessment of tumor development using cancer avatars derived from genetically engineered pluripotent stem cells. Nature Communications, 2020, 11, 550.	12.8	45
134	Emerging function of mTORC2 as a core regulator in glioblastoma: metabolic reprogramming and drug resistance. Cancer Biology and Medicine, 2014, 11, 255-63.	3.0	44
135	Extrachromosomal DNA: An Emerging Hallmark in Human Cancer. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 367-386.	22.4	44
136	Nerve Growth Factor Signals via Preexisting TrkA Receptor Oligomers. Biophysical Journal, 2002, 83, 968-976.	0.5	43
137	Clinical outcome in pediatric glial and embryonal brain tumors correlates with in vitro multiâ€passageable neurosphere formation. Pediatric Blood and Cancer, 2010, 55, 644-651.	1.5	41
138	Autocrine Endothelin-3/Endothelin Receptor B Signaling Maintains Cellular and Molecular Properties of Glioblastoma Stem Cells. Molecular Cancer Research, 2011, 9, 1668-1685.	3.4	38
139	Cancer metabolism as a central driving force of glioma pathogenesis. Brain Tumor Pathology, 2016, 33, 161-168.	1.7	38
140	Metabolic reprogramming in the pathogenesis of glioma: Update. Neuropathology, 2019, 39, 3-13.	1.2	38
141	Targeting glioblastoma signaling and metabolism with a re-purposed brain-penetrant drug. Cell Reports, 2021, 37, 109957.	6.4	38
142	Cortical Dysplasia, Genetic Abnormalities and Neurocutaneous Syndromes. Developmental Neuroscience, 1999, 21, 248-259.	2.0	37
143	Activation of Src induces mitochondrial localisation of de2-7EGFR (EGFRvIII) in glioma cells: implications for glucose metabolism. Journal of Cell Science, 2011, 124, 2938-2950.	2.0	35
144	Suppression of G-protein–Coupled Receptor Kinase 3 Expression Is a Feature of Classical GBM That Is Required for Maximal Growth. Molecular Cancer Research, 2012, 10, 156-166.	3.4	35

#	Article	IF	CITATIONS
145	AshwaMAX and Withaferin A inhibits gliomas in cellular and murine orthotopic models. Journal of Neuro-Oncology, 2016, 126, 253-264.	2.9	34
146	Loss of polycomb repressive complex 1 activity and chromosomal instability drive uveal melanoma progression. Nature Communications, 2021, 12, 5402.	12.8	34
147	Charting the course across the blood-brain barrier. Journal of Clinical Investigation, 2011, 121, 31-33.	8.2	34
148	Epithelial Membrane Protein-2 (EMP2) Activates Src Protein and Is a Novel Therapeutic Target for Glioblastoma. Journal of Biological Chemistry, 2014, 289, 13974-13985.	3.4	33
149	Robustness of gene expression profiling in glioma specimen samplings and derived cell lines. Molecular Brain Research, 2005, 136, 99-103.	2.3	31
150	Tumor-Suppressive miR148a Is Silenced by CpG Island Hypermethylation in <i>IDH1</i> -Mutant Gliomas. Clinical Cancer Research, 2014, 20, 5808-5822.	7.0	30
151	mTOR Complexes as a Nutrient Sensor for Driving Cancer Progression. International Journal of Molecular Sciences, 2018, 19, 3267.	4.1	30
152	EcSeg: Semantic Segmentation of Metaphase Images Containing Extrachromosomal DNA. IScience, 2019, 21, 428-435.	4.1	30
153	Lymphomatosis Cerebri Presenting as Rapidly Progressive Dementia. Neurologist, 2007, 13, 150-153.	0.7	29
154	AMPK: A metabolic checkpoint that regulates the growth of EGFR activated glioblastomas. Cell Cycle, 2010, 9, 211-212.	2.6	29
155	Extrachromosomal DNA (ecDNA) in cancer pathogenesis. Current Opinion in Genetics and Development, 2021, 66, 78-82.	3.3	29
156	Brain Malignancy Steering Committee clinical trials planning workshop: Report from the Targeted Therapies Working Group. Neuro-Oncology, 2015, 17, 180-188.	1.2	28
157	Molecular and Genetic Determinants of Glioma Cell Invasion. International Journal of Molecular Sciences, 2017, 18, 2609.	4.1	28
158	mTOR complex 2 is an integrator of cancer metabolism and epigenetics. Cancer Letters, 2020, 478, 1-7.	7.2	27
159	mTORC2 and Metabolic Reprogramming in GBM: at the Interface of Genetics and Environment. Brain Pathology, 2015, 25, 755-759.	4.1	26
160	New Roles for Galectins in Brain Tumors-From Prognostic Markers to Therapeutic Targets. Brain Pathology, 2006, 15, 124-132.	4.1	25
161	Silencing of protein kinase D2 induces glioma cell senescence via p53-dependent and -independent pathways. Neuro-Oncology, 2014, 16, 933-945.	1.2	25
162	Targeting cancer's metabolic co-dependencies: A landscape shaped by genotype and tissue context. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 76-87.	7.4	25

#	Article	IF	CITATIONS
163	Dual Regulation of Histone Methylation by mTOR Complexes Controls Glioblastoma Tumor Cell Growth via EZH2 and SAM. Molecular Cancer Research, 2020, 18, 1142-1152.	3.4	25
164	New Strategies in the Molecular Targeting of Glioblastoma: How Do You Hit a Moving Target?. Clinical Cancer Research, 2011, 17, 6-11.	7.0	24
165	Lyophilized brain tumor specimens can be used for histologic, nucleic acid, and protein analyses after 1 year of room temperature storage. Journal of Neuro-Oncology, 2013, 113, 365-373.	2.9	23
166	mTORC2 links growth factor signaling with epigenetic regulation of iron metabolism in glioblastoma. Journal of Biological Chemistry, 2019, 294, 19740-19751.	3.4	23
167	A cell type-selective apoptosis-inducing small molecule for the treatment of brain cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6435-6440.	7.1	23
168	Codependency of Metabolism and Epigenetics Drives Cancer Progression: A Review. Acta Histochemica Et Cytochemica, 2020, 53, 1-10.	1.6	23
169	Amplification of the Mutation-Carrying BRCA2 Allele Promotes RAD51 Loading and PARP Inhibitor Resistance in the Absence of Reversion Mutations. Molecular Cancer Therapeutics, 2020, 19, 602-613.	4.1	20
170	Extrachromosomal DNA in HPV-Mediated Oropharyngeal Cancer Drives Diverse Oncogene Transcription. Clinical Cancer Research, 2021, 27, 6772-6786.	7.0	20
171	Striking the balance between PTEN and PDK1: it all depends on the cell context. Genes and Development, 2009, 23, 1699-1704.	5.9	19
172	Protein Acetylation at the Interface of Genetics, Epigenetics and Environment in Cancer. Metabolites, 2021, 11, 216.	2.9	19
173	Tumor pharmacokinetics (PK) and pharmacodynamics (PD) of SAR245409 (XL765) and SAR245408 (XL147) administered as single agents to patients with recurrent glioblastoma (GBM): An Ivy Foundation early-phase clinical trials consortium study Journal of Clinical Oncology, 2013, 31, 2012-2012.	1.6	19
174	Activation of ERBB4 in Glioblastoma Can Contribute to Increased Tumorigenicity and Influence Therapeutic Response. Cancers, 2018, 10, 243.	3.7	18
175	Targeting epidermal growth factor receptor coâ€dependent signaling pathways in glioblastoma. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1398.	6.6	17
176	Using molecular information to guide brain tumor therapy. Nature Clinical Practice Neurology, 2006, 2, 232-233.	2.5	16
177	mTORC2 dictates Warburg effect and drug resistance. Cell Cycle, 2014, 13, 1053-1054.	2.6	16
178	mTORC2 activity in brain cancer: Extracellular nutrients are required to maintain oncogenic signaling. BioEssays, 2016, 38, 839-844.	2.5	16
179	Extrachromosomal DNA in Cancer. Annual Review of Genomics and Human Genetics, 2022, 23, 29-52.	6.2	16
180	Longitudinal evaluation of MPIO-labeled stem cell biodistribution in glioblastoma using high resolution and contrast-enhanced MR imaging at 14.1Tesla. Neuro-Oncology, 2012, 14, 1050-1061.	1.2	15

#	Article	IF	CITATIONS
181	Old player, new partner: ECFRvIII and cytokine receptor signaling in glioblastoma. Nature Neuroscience, 2016, 19, 765-767.	14.8	14
182	The metabolomic landscape plays a critical role in glioma oncogenesis. Cancer Science, 2022, 113, 1555-1563.	3.9	12
183	Acridine Yellow G Blocks Glioblastoma Growth via Dual Inhibition of Epidermal Growth Factor Receptor and Protein Kinase C Kinases. Journal of Biological Chemistry, 2012, 287, 6113-6127.	3.4	11
184	Acyl-CoA-Binding Protein Fuels Gliomagenesis. Cell Metabolism, 2019, 30, 229-230.	16.2	11
185	HOT Models in Flux: Mitochondrial Glucose Oxidation Fuels Glioblastoma Growth. Cell Metabolism, 2012, 15, 789-790.	16.2	10
186	Determining PTEN Functional Status by Network Component Deduced Transcription Factor Activities. PLoS ONE, 2012, 7, e31053.	2.5	10
187	Fast Metabolic Response to Drug Intervention Through Analysis on a Miniaturized, Highly Integrated Molecular Imaging System. Journal of Nuclear Medicine, 2013, 54, 1820-1824.	5.0	10
188	Arsenic reverses glioblastoma resistance to mTOR-targeted therapies. Cell Cycle, 2013, 12, 1473-1474.	2.6	9
189	BAP1 methylation: a prognostic marker of uveal melanoma metastasis. Npj Precision Oncology, 2021, 5, 89.	5.4	7
190	Metabolic Reprogramming in Brain Cancer: A Coordinated Effort. Brain Pathology, 2015, 25, 753-754.	4.1	5
191	Lost — and found — in translation. Journal of Clinical Investigation, 2011, 121, 3357-3359.	8.2	5
192	Update and developments in the treatment of glioblastoma multiforme – focus on bevacizumab. Pharmacogenomics and Personalized Medicine, 2010, 3, 79.	0.7	4
193	Greater Than the Sum of Its Parts: Single-Nucleus Sequencing Identifies Convergent Evolution of Independent <i>EGFR</i> Mutants in GBM. Cancer Discovery, 2014, 4, 876-878.	9.4	4
194	Same Script, Different Cast: Different Cell Origins Shape Molecular Features and Therapeutic Response in Glioblastoma. Cancer Cell, 2020, 38, 311-313.	16.8	4
195	Discovery in Context: Leveraging Multidimensional Glioblastoma Datasets to Identify Targetable Regulatory Networks: Figure 1 Cancer Discovery, 2012, 2, 676-678.	9.4	3
196	NT-39 * GLUTAMINASE-MEDIATED METABOLIC PATHWAY INVOLVES GLIOBLASTOMA RESISTANCE TO mTOR-TARGETED THERAPIES. Neuro-Oncology, 2014, 16, v167-v167.	1.2	2
197	Shared Intelligence: A Patient-Derived, Deeply Characterized Glioblastoma Cell Line Resource. EBioMedicine, 2015, 2, 1274-1275.	6.1	0