Daniel Louvard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/457824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Yap and Mll1 promote a persistent regenerative cell state induced by Notch signaling and loss of p53. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
2	COVID-19 and drugs: pathophysiology and therapeutic approaches. Comptes Rendus - Biologies, 2021, 344, 27-42.	0.2	5
3	Phosphorylation of Merlin by Aurora A kinase appears necessary for mitotic progression. Journal of Biological Chemistry, 2019, 294, 12992-13005.	3.4	7
4	LINGO-1 Regulates Oligodendrocyte Differentiation through the Cytoplasmic Gelsolin Signaling Pathway. Journal of Neuroscience, 2017, 37, 3127-3137.	3.6	36
5	AMOTL1 Promotes Breast Cancer Progression and Is Antagonized by Merlin. Neoplasia, 2016, 18, 10-24.	5.3	31
6	Concomitant Notch activation and p53 deletion trigger epithelial-to-mesenchymal transition and metastasis in mouse gut. Nature Communications, 2014, 5, 5005.	12.8	114
7	Oncogenic mutations in intestinal adenomas regulate Bim-mediated apoptosis induced by TGF-β. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2229-36.	7.1	52
8	Conditional expression of fascin increases tumor progression in a mouse model of intestinal cancer. European Journal of Cell Biology, 2014, 93, 388-395.	3.6	21
9	Proteomic screening identifies a YAP-driven signaling network linked to tumor cell proliferation in human schwannomas. Neuro-Oncology, 2014, 16, 1196-1209.	1.2	27
10	Fascin Plays a Role in Stress Fiber Organization and Focal Adhesion Disassembly. Current Biology, 2014, 24, 1492-1499.	3.9	82
11	Enterocyte loss of polarity and gut wound healing rely upon the F-actin–severing function of villin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1380-9.	7.1	67
12	The Power of One. Science Translational Medicine, 2012, 4, 130fs7.	12.4	1
13	Do cancer cells have distinct adhesions in 3D collagen matrices and in vivo?. European Journal of Cell Biology, 2012, 91, 930-937.	3.6	51
14	<scp>Myo</scp> sin <scp>VI</scp> Regulates Actin Dynamics and Melanosome Biogenesis. Traffic, 2012, 13, 665-680.	2.7	17
15	Ezrin Ubiquitylation by the E3 Ubiquitin Ligase, WWP1, and Consequent Regulation of Hepatocyte Growth Factor Receptor Activity. PLoS ONE, 2012, 7, e37490.	2.5	14
16	MyosinÂ1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network. Nature Cell Biology, 2011, 13, 779-789.	10.3	105
17	Notch signaling in intestinal homeostasis across species: the cases of Drosophila, Zebrafish and the mouse. Experimental Cell Research, 2011, 317, 2740-2747.	2.6	49
18	Cytoskeleton networks in basement membrane transmigration. European Journal of Cell Biology, 2011, 90, 93-99.	3.6	28

#	Article	IF	CITATIONS
19	Clathrin is required for Scar/Wave-mediated lamellipodium formation. Journal of Cell Science, 2011, 124, 3414-3427.	2.0	34
20	Notch Lineages and Activity in Intestinal Stem Cells Determined by a New Set of Knock-In Mice. PLoS ONE, 2011, 6, e25785.	2.5	116
21	Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. Journal of Cell Biology, 2010, 189, 541-556.	5.2	430
22	Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6309-6314.	7.1	285
23	Biodistribution and Tumor Targeting of Indium and Iodine-labeled Shiga Toxin B-Subunit. Current Radiopharmaceuticals, 2009, 2, 184-190.	0.8	3
24	Different Microtubule Motors Move Early and Late Endocytic Compartments. Traffic, 2008, 9, 492-509.	2.7	132
25	Spatial recruitment and activation of the Fes kinase by ezrin promotes HGF-induced cell scattering. EMBO Journal, 2008, 27, 38-50.	7.8	46
26	Epithelial Morphogenesis and Intestinal Cancer: New Insights in Signaling Mechanisms. Advances in Cancer Research, 2008, 100, 85-111.	5.0	15
27	Free Brick1 Is a Trimeric Precursor in the Assembly of a Functional Wave Complex. PLoS ONE, 2008, 3, e2462.	2.5	63
28	Heterogeneous Metastasis Efficiency of Isogenic Orthotopic Colon Cancer Xenografts Reveals Distinctive Gene Expression Profiles. Tumor Biology, 2007, 28, 139-150.	1.8	3
29	Wnt/β-Catenin Is Essential for Intestinal Homeostasis and Maintenance of Intestinal Stem Cells. Molecular and Cellular Biology, 2007, 27, 7551-7559.	2.3	533
30	Fascin, a Novel Target of β-Catenin-TCF Signaling, Is Expressed at the Invasive Front of Human Colon Cancer. Cancer Research, 2007, 67, 6844-6853.	0.9	249
31	RNAi depleted Drosophila cell extracts to dissect signaling pathways leading to actin polymerization. Journal of Proteomics, 2007, 70, 663-669.	2.4	2
32	In vivo Tumor Targeting Using a Novel Intestinal Pathogen-Based Delivery Approach. Cancer Research, 2006, 66, 7230-7236.	0.9	65
33	Shigella flexneri infection is dependent on villin in the mouse intestine and in primary cultures of intestinal epithelial cells. Cellular Microbiology, 2005, 7, 1109-1116.	2.1	32
34	Notch signals control the fate of immature progenitor cells in the intestine. Nature, 2005, 435, 964-968.	27.8	794
35	Myosin Ib modulates the morphology and the protein transport within multi-vesicular sorting endosomes. Journal of Cell Science, 2005, 118, 4823-4832.	2.0	84
36	Rab13 regulates PKA signaling during tight junction assembly. Journal of Cell Biology, 2004, 165, 175-180.	5.2	88

#	Article	IF	CITATIONS
37	Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. Journal of Cell Biology, 2004, 164, 653-659.	5.2	335
38	The co-workers of actin filaments: from cell structures to signals. Nature Reviews Molecular Cell Biology, 2004, 5, 635-646.	37.0	277
39	Enhanced sensitivity to irinotecan by Cdk1 inhibition in the p53-deficient HT29 human colon cancer cell line. Oncogene, 2004, 23, 1737-1744.	5.9	43
40	Co-operative effect of c-Src and ezrin in deregulation of cell-cell contacts and scattering of mammary carcinoma cells. Journal of Cellular Biochemistry, 2004, 92, 16-28.	2.6	44
41	Ectopic expression of syntaxin 1 in the ER redirects TI-VAMP- and cellubrevin-containing vesicles. Journal of Cell Science, 2003, 116, 2805-2816.	2.0	42
42	Isolation and Characterization of an Aggresome Determinant in theNF2 Tumor Suppressor. Journal of Biological Chemistry, 2003, 278, 6235-6242.	3.4	10
43	Molecular analysis of microscopic ezrin dynamics by two-photon FRAP. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12813-12818.	7.1	101
44	Mutant Products of the NF2 Tumor Suppressor Gene Are Degraded by the Ubiquitin-Proteasome Pathway. Journal of Biological Chemistry, 2002, 277, 31279-31282.	3.4	27
45	ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling. Current Opinion in Cell Biology, 2002, 14, 104-109.	5.4	175
46	A Common Exocytotic Mechanism Mediates Axonal and Dendritic Outgrowth. Journal of Neuroscience, 2001, 21, 3830-3838.	3.6	142
47	[21] Properties of Rab13 interaction with rod cGMP phosphodiesterase δ subunit. Methods in Enzymology, 2001, 329, 197-209.	1.0	4
48	ActA and human zyxin harbour Arp2/3-independent actin-polymerization activity. Nature Cell Biology, 2001, 3, 699-707.	10.3	113
49	Na + â€H + exchanger 3 (NHE3) is present in lipid rafts in the rabbit ileal brush border: a role for rafts in trafficking and rapid stimulation of NHE3. Journal of Physiology, 2001, 537, 537-552.	2.9	119
50	Ezrin Interacts with Focal Adhesion Kinase and Induces Its Activation Independently of Cell-matrix Adhesion. Journal of Biological Chemistry, 2001, 276, 37686-37691.	3.4	103
51	Targeting of Zyxin to Sites of Actin Membrane Interaction and to the Nucleus. Journal of Biological Chemistry, 2001, 276, 34759-34767.	3.4	133
52	Functional cystic fibrosis transmembrane conductance regulator tagged with an epitope of the vesicular stomatis virus glycoprotein can be addressed to the apical domain of polarized cells. European Journal of Cell Biology, 2000, 79, 795-802.	3.6	5
53	Tight Junction, a Platform for Trafficking and Signaling Protein Complexes. Journal of Cell Biology, 2000, 151, F31-F36.	5.2	162
54	Villin-Like Actin-Binding Proteins Are Expressed Ubiquitously in Arabidopsis. Plant Physiology, 2000, 122, 35-48.	4.8	111

4

#	Article	IF	CITATIONS
55	Characterization of the Interaction between Zyxin and Members of the Ena/Vasodilator-stimulated Phosphoprotein Family of Proteins. Journal of Biological Chemistry, 2000, 275, 22503-22511.	3.4	146
56	Morphogenic Effects of Ezrin Require a Phosphorylation-Induced Transition from Oligomers to Monomers at the Plasma Membrane. Journal of Cell Biology, 2000, 150, 193-204.	5.2	250
57	Role of Tetanus Neurotoxin Insensitive Vesicle-Associated Membrane Protein (Ti-Vamp) in Vesicular Transport Mediating Neurite Outgrowth. Journal of Cell Biology, 2000, 149, 889-900.	5.2	203
58	Differentiation of the epithelial apical junctional complex during mouse preimplantation development: a role for rab13 in the early maturation of the tight junction. Mechanisms of Development, 2000, 97, 93-104.	1.7	91
59	Subcellular Localization of Tetanus Neurotoxin-Insensitive Vesicle-Associated Membrane Protein (VAMP)/VAMP7 in Neuronal Cells: Evidence for a Novel Membrane Compartment. Journal of Neuroscience, 1999, 19, 9803-9812.	3.6	100
60	In Vivo, Villin Is Required for Ca2+-Dependent F-Actin Disruption in Intestinal Brush Borders. Journal of Cell Biology, 1999, 146, 819-830.	5.2	139
61	Villin Function in the Organization of the Actin Cytoskeleton. Journal of Biological Chemistry, 1999, 274, 26751-26760.	3.4	84
62	Regulatory Sequences of the Mouse Villin Gene That Efficiently Drive Transgenic Expression in Immature and Differentiated Epithelial Cells of Small and Large Intestines. Journal of Biological Chemistry, 1999, 274, 6476-6482.	3.4	128
63	The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends in Biochemical Sciences, 1998, 23, 281-282.	7.5	494
64	The Rod cGMP Phosphodiesterase δ Subunit Dissociates the Small GTPase Rab13 from Membranes. Journal of Biological Chemistry, 1998, 273, 22340-22345.	3.4	61
65	I- <i>Sce</i> I-Induced Gene Replacement at a Natural Locus in Embryonic Stem Cells. Molecular and Cellular Biology, 1998, 18, 1444-1448.	2.3	118
66	Ezrin Is an Effector of Hepatocyte Growth Factor–mediated Migration and Morphogenesis in Epithelial Cells. Journal of Cell Biology, 1997, 138, 423-434.	5.2	290
67	Conformational behaviour of a synthetic peptide of the <i>C</i> â€ŧerminus of villin that interacts with actin: an NMR, CD and simulated annealing study. International Journal of Peptide and Protein Research, 1995, 45, 574-586.	0.1	8
68	CNRS defended. Nature, 1994, 367, 10-10.	27.8	0
69	Membrane-actin microfilament connections: an increasing diversity of players related to band 4.1. Current Opinion in Cell Biology, 1994, 6, 136-141.	5.4	181
70	Water handling in Caco-2 cells: effects of acidification of the medium. Pflugers Archiv European Journal of Physiology, 1993, 423-423, 1-6.	2.8	10
71	An actin-binding site containing a conserved motif of charged amino acid residues is essential for the morphogenic effect of villin. Cell, 1992, 70, 81-92.	28.9	171
72	Do unconventional myosins exert functions in dynamics of membrane compartments?. FEBS Letters, 1992, 307, 87-92.	2.8	16

#	Article	IF	CITATIONS
73	Membranes Editorial overview. Current Opinion in Cell Biology, 1991, 3, 575-579.	5.4	3
74	From the structure to the function of villin, an actin-binding protein of the brush border. BioEssays, 1990, 12, 403-408.	2.5	89
75	Cytoskeleton organization and submembranous interactions in intestinal and renal brush borders. Kidney International, 1988, 34, 309-320.	5.2	71
76	Molecular organization of the intestinal brush border. Biochimie, 1988, 70, 1297-1306.	2.6	36
77	The Golgi apparatus-complex of neurons and astrocytes studied with an anti-organelle antibody. Brain Research, 1987, 408, 13-21.	2.2	14
78	Pseudopod membrane in TSH-stimulated thyroid cells: a specialized domain in the neighboring apical plasma membrane. Cell and Tissue Research, 1986, 245, 159.	2.9	9
79	Localized barriers in the plasma membrane: a common way to form domains. Trends in Biochemical Sciences, 1985, 10, 435-438.	7.5	62
80	Association of an aminoacyl-tRNA synthetase complex and of phenylalanyl-tRNA synthetase with the cytoskeletal framework fraction from mammalian cells. Experimental Cell Research, 1985, 156, 91-102.	2.6	91
81	[33] Use of immunocytochemical techniques in studying the biogenesis of cell surfaces in polarized epithelia. Methods in Enzymology, 1983, 98, 379-395.	1.0	59
82	Immunolocalization of the 110,000 molecular weight cytoskeletal protein of intestinal microvilli. Journal of Molecular Biology, 1981, 152, 49-66.	4.2	61
83	Passage of viral membrane proteins through the Golgi complex. Journal of Molecular Biology, 1981, 152, 663-698.	4.2	222
84	Transmembrane interactions and the mechanisms of transport of proteins across membranes. Journal of Supramolecular Structure, 1978, 9, 373-389.	2.3	71
85	Structure-Function Relationship of Intestinal and Renal Brush-Border Membrane-Bound Aminopeptidases and Maltases. Biochemical Society Transactions, 1977, 5, 523-527.	3.4	7
86	The brush-border intestinal aminopeptidase, a transmembrane protein as probed by macromolecular photolabelling. Journal of Molecular Biology, 1976, 106, 1023-1035.	4.2	77
87	A quantitative immunochemical technique for evaluation of the extent of integration of membrane proteins and of protein conformational changes and homologies. Analytical Biochemistry, 1976, 76, 83-94.	2.4	25
88	Antibodies as probes for detection of conformational changes in proteins. A model study with the alkaline phosphatase of Escherichia coli. Journal of Molecular Biology, 1975, 97, 309-335.	4.2	45
89	Preparation of active iodinated specific antibodies. FEBS Letters, 1975, 59, 32-35.	2.8	13