
Stefan Thor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/45777/publications.pdf Version: 2024-02-01

STEEAN THOP

#	Article	IF	CITATIONS
1	Variational autoencoding of gene landscapes during mouse CNS development uncovers layered roles of Polycomb Repressor Complex 2. Nucleic Acids Research, 2022, , .	6.5	2
2	Selective requirement for polycomb repressor complex 2 in the generation of specific hypothalamic neuronal subtypes. Development (Cambridge), 2022, 149, .	1.2	4
3	Selective role of the DNA helicase Mcm5 in BMP retrograde signaling during Drosophila neuronal differentiation. PLoS Genetics, 2022, 18, e1010255.	1.5	0
4	TEAD family transcription factors in development and disease. Development (Cambridge), 2021, 148, .	1.2	37
5	Fibrillation and molecular characteristics are coherent with clinical and pathological features of 4-repeat tauopathy caused by MAPT variant G273R. Neurobiology of Disease, 2020, 146, 105079.	2.1	4
6	Genetic mechanisms controlling anterior expansion of the central nervous system. Current Topics in Developmental Biology, 2020, 137, 333-361.	1.0	5
7	Development of the Drosophila melanogaster embryonic CNS. , 2020, , 617-642.		0
8	The Five Faces of Notch Signalling During Drosophila melanogaster Embryonic CNS Development. Advances in Experimental Medicine and Biology, 2020, 1218, 39-58.	0.8	6
9	Amyloid fibril polymorphism and cell-specific toxicity <i>in vivo</i> . Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2019, 26, 136-137.	1.4	3
10	Branching gene regulatory network dictating different aspects of a neuronal cell identity. Development (Cambridge), 2019, 146, .	1.2	10
11	Brain expansion promoted by polycomb-mediated anterior enhancement of a neural stem cell proliferation program. PLoS Biology, 2019, 17, e3000163.	2.6	16
12	PIP degron-stabilized Dacapo/p21Cip1 and mutations in ago act in an anti- versus pro-proliferative manner, yet both trigger an increase in Cyclin E levels. Development (Cambridge), 2019, 146, .	1.2	5
13	Drosophila Neuroblast Selection Is Gated by Notch, Snail, SoxB, and EMT Gene Interplay. Cell Reports, 2019, 29, 3636-3651.e3.	2.9	20
14	Anterior CNS expansion driven by brain transcription factors. ELife, 2019, 8, .	2.8	17
15	Aggregated Aβ1-42 Is Selectively Toxic for Neurons, Whereas Glial Cells Produce Mature Fibrils with Low Toxicity in Drosophila. Cell Chemical Biology, 2018, 25, 595-610.e5.	2.5	21
16	Evolutionarily conserved anterior expansion of the central nervous system promoted by a common PcG-Hox program. Development (Cambridge), 2018, 145, .	1.2	26
17	Specification of Drosophila neuropeptidergic neurons by the splicing component brr2. PLoS Genetics, 2018, 14, e1007496.	1.5	4
18	Bar-coding neurodegeneration: Identifying sub-cellular effects of human neurodegenerative disease proteins using <i>Drosophila</i> leg neurons. DMM Disease Models and Mechanisms, 2017, 10, 1027-1038.	1.2	6

#	Article	IF	CITATIONS
19	Nervous System Development: Temporal Patterning of Large Neural Lineages. Current Biology, 2017, 27, R392-R394.	1.8	5
20	Anterior-Posterior Gradient in Neural Stem and Daughter Cell Proliferation Governed by Spatial and Temporal Hox Control. Current Biology, 2017, 27, 1161-1172.	1.8	30
21	Human TTBK1, TTBK2 and MARK1 kinase toxicity in Drosophila melanogaster is exacerbated by co-expression of human Tau. Biology Open, 2017, 6, 1013-1023.	0.6	13
22	Neural Lineage Progression Controlled by a Temporal Proliferation Program. Developmental Cell, 2017, 43, 332-348.e4.	3.1	33
23	Neuronal cell fate specification by the molecular convergence of different spatio-temporal cues on a common initiator terminal selector gene. PLoS Genetics, 2017, 13, e1006729.	1.5	14
24	Ctr9, a Key Component of the Paf1 Complex, Affects Proliferation and Terminal Differentiation in the Developing <i>Drosophila</i> Nervous System. G3: Genes, Genomes, Genetics, 2016, 6, 3229-3239.	0.8	25
25	<i>sequoia</i> Controls the type I>0 daughter proliferation switch in the developing <i>Drosophila</i> nervous system. Development (Cambridge), 2016, 143, 3774-3784.	1.2	14
26	Advances in Understanding the Generation and Specification of Unique Neuronal Sub-types from Drosophila Neuropeptidergic Neurons. , 2016, , 57-93.		0
27	Neuronal Cell Fate Specification by the Convergence of Different Spatiotemporal Cues on a Common Terminal Selector Cascade. PLoS Biology, 2016, 14, e1002450.	2.6	21
28	Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling. PLoS Genetics, 2016, 12, e1005984.	1.5	33
29	Neuronal cell fate diversification controlled by sub-temporal action of Kruppel. ELife, 2016, 5, .	2.8	19
30	sequoia Controls the type I>0 daughter proliferation switch in the developing Drosophila nervous system. Journal of Cell Science, 2016, 129, e1.1-e1.1.	1.2	0
31	Systematic AÎ ² Analysis in Drosophila Reveals High Toxicity for the 1-42, 3-42 and 11-42 Peptides, and Emphasizes N- and C-Terminal Residues. PLoS ONE, 2015, 10, e0133272.	1.1	30
32	Transcriptional selectors, masters, and combinatorial codes: regulatory principles of neural subtype specification. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 505-528.	5.9	98
33	Novel Genes Involved in Controlling Specification of <i>Drosophila</i> FMRFamide Neuropeptide Cells. Genetics, 2015, 200, 1229-1244.	1.2	25
34	Global Programmed Switch in Neural Daughter Cell Proliferation Mode Triggered by a Temporal Gene Cascade. Developmental Cell, 2014, 30, 192-208.	3.1	70
35	Klumpfuss controls FMRFamide expression by enabling BMP signaling within the NB5-6 lineage. Development (Cambridge), 2013, 140, 2181-2189.	1.2	2
36	Stem cells in multiple time zones. Nature, 2013, 498, 441-443.	13.7	3

#	Article	IF	CITATIONS
37	Control of neuronal cell fate and number by integration of distinct daughter cell proliferation modes with temporal progression. Development (Cambridge), 2012, 139, 678-689.	1.2	47
38	Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila. PLoS ONE, 2012, 7, e31424.	1.1	129
39	Segment-specific generation of Drosophila Capability neuropeptide neurons by multi-faceted Hox cues. Developmental Biology, 2011, 353, 72-80.	0.9	44
40	Seven up acts as a temporal factor during two different stages of neuroblast 5-6 development. Development (Cambridge), 2011, 138, 5311-5320.	1.2	41
41	Insights into Hox Protein Function from a Large Scale Combinatorial Analysis of Protein Domains. PLoS Genetics, 2011, 7, e1002302.	1.5	32
42	Efficient imaging of amyloid deposits in Drosophila models of human amyloidoses. Nature Protocols, 2010, 5, 935-944.	5.5	52
43	A genetic cascade involving <i>klumpfuss, nab</i> and <i>castor</i> specifies the abdominal leucokinergic neurons in the <i>Drosophila</i> CNS. Development (Cambridge), 2010, 137, 3327-3336.	1.2	30
44	Segment-Specific Neuronal Subtype Specification by the Integration of Anteroposterior and Temporal Cues. PLoS Biology, 2010, 8, e1000368.	2.6	78
45	Modeling Familial Amyloidotic Polyneuropathy (Transthyretin V30M) in <i>Drosophila melanogaster</i> . Neurodegenerative Diseases, 2009, 6, 127-138.	0.8	26
46	Programmed cell death in the nervous system—a programmed cell fate?. Current Opinion in Neurobiology, 2009, 19, 127-133.	2.0	22
47	Neuronal Subtype Specification within a Lineage by Opposing Temporal Feed-Forward Loops. Cell, 2009, 139, 969-982.	13.5	153
48	Light moulds plastic brains. Nature, 2008, 456, 177-178.	13.7	2
49	Postmitotic Specification of Drosophila Insulinergic Neurons from Pioneer Neurons. PLoS Biology, 2008, 6, e58.	2.6	104
50	Specification of Neuronal Identities by Feedforward Combinatorial Coding. PLoS Biology, 2007, 5, e37.	2.6	113
51	Development of Drosophila motoneurons: Specification and morphology. Seminars in Cell and Developmental Biology, 2006, 17, 3-11.	2.3	102
52	Zfh1, a somatic motor neuron transcription factor, regulates axon exit from the CNS. Developmental Biology, 2006, 291, 253-263.	0.9	50
53	Expression ofDrosophilaBarH1-H2 homeoproteins in developing dopaminergic cells and segmental nerve a (SNa) motoneurons. European Journal of Neuroscience, 2006, 24, 37-44.	1.2	21
54	Development and Structure of Motoneurons. International Review of Neurobiology, 2006, 75, 33-53.	0.9	30

#	Article	IF	CITATIONS
55	Specification of Drosophila aCC motoneuron identity by a genetic cascade involving even-skipped, grain and zfh1. Development (Cambridge), 2006, 133, 1445-1455.	1.2	42
56	Regulators Acting in Combinatorial Codes Also Act Independently in Single Differentiating Neurons. Neuron, 2005, 45, 689-700.	3.8	83
57	Segment-specific prevention of pioneer neuron apoptosis by cell-autonomous, postmitotic Hox gene activity. Development (Cambridge), 2004, 131, 6093-6105.	1.2	105
58	Independent roles of the dachshund and eyes absentgenes in BMP signaling, axon pathfinding and neuronal specification. Development (Cambridge), 2004, 131, 5837-5848.	1.2	61
59	Specification of Drosophila motoneuron identity by the combinatorial action of POU and LIM-HD factors. Development (Cambridge), 2004, 131, 5429-5439.	1.2	73
60	Genetic control of Drosophila nerve cord development. Current Opinion in Neurobiology, 2003, 13, 8-15.	2.0	247
61	Specification of Neuropeptide Cell Identity by the Integration of Retrograde BMP Signaling and a Combinatorial Transcription Factor Code. Cell, 2003, 113, 73-86.	13.5	162
62	Together at Last. Neuron, 2003, 38, 675-677.	3.8	20
63	Motor neuron specification in worms, flies and mice: conserved and 'lost' mechanisms. Current Opinion in Genetics and Development, 2002, 12, 558-564.	1.5	97
64	Control of <i>Drosophila</i> imaginal disc development by <i>rotund</i> and <i>roughened eye</i> : differentially expressed transcripts of the same gene encoding functionally distinct zinc finger proteins. Development (Cambridge), 2002, 129, 1273-1281.	1.2	88
65	Control of Drosophila imaginal disc development by rotund and roughened eye: differentially expressed transcripts of the same gene encoding functionally distinct zinc finger proteins. Development (Cambridge), 2002, 129, 1273-81.	1.2	42
66	Expression and function of the LIM homeodomain protein Apterous during embryonic brain development of Drosophila. Development Genes and Evolution, 2001, 211, 545-554.	0.4	4
67	A LIM-homeodomain combinatorial code for motor-neuron pathway selection. Nature, 1999, 397, 76-80.	13.7	277
68	Chip and Apterous Physically Interact to Form a Functional Complex during Drosophila Development. Molecular Cell, 1999, 4, 259-265.	4.5	106
69	The Drosophila islet Gene Governs Axon Pathfinding and Neurotransmitter Identity. Neuron, 1997, 18, 397-409.	3.8	267
70	Islet expression of Rhombotin and Isl-1 suggests cell type specific exposure of LIM-domain epitopes. Endocrine, 1995, 3, 399-408.	2.2	4
71	The genetics of brain development: Conserved programs in flies and mice. Neuron, 1995, 15, 975-977.	3.8	48
72	Early stages of motor neuron differentiation revealed by expression of homeobox gene Islet-1. Science, 1992, 256, 1555-1560.	6.0	618

#	Article	IF	CITATIONS
73	The homeodomain LIM protein Isl-1 is expressed in subsets of neurons and endocrine cells in the adult rat. Neuron, 1991, 7, 881-889.	3.8	337
74	Novel Insulin Promoter- and Enhancer-Binding Proteins That Discriminate between Pancreatic α- and β-Cells. Molecular Endocrinology, 1991, 5, 897-904.	3.7	124
75	Insulin gene enhancer binding protein IsI-1 is a member of a novel class of proteins containing both a homeo-and a Cys–His domain. Nature, 1990, 344, 879-882.	13.7	681
76	Aggregated AA1-42 is Selectively Toxic for Neurons, Whereas Glial Cells Produce Mature Fibrils with Low Toxicity in Drosophila. SSRN Electronic Journal, 0, , .	0.4	1
77	Dachshund acts with Abdominalâ \in B to trigger programmed cell death in the Drosophila central nervous system at the frontiers of Abdâ \in B expression. Developmental Neurobiology, 0, , .	1.5	2