Berlin Londono-Renteria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/457706/publications.pdf

Version: 2024-02-01

46 papers

1,020 citations

394421 19 h-index 29 g-index

51 all docs

51 docs citations

51 times ranked

1364 citing authors

#	Article	IF	CITATIONS
1	Multiple Salivary Proteins from Aedes aegypti Mosquito Bind to the Zika Virus Envelope Protein. Viruses, 2022, 14, 221.	3.3	9
2	Vertebrate Responses against Arthropod Salivary Proteins and Their Therapeutic Potential. Vaccines, 2021, 9, 347.	4.4	5
3	Impacts of Infectious Dose, Feeding Behavior, and Age of Culicoides sonorensis Biting Midges on Infection Dynamics of Vesicular Stomatitis Virus. Pathogens, 2021, 10, 816.	2.8	9
4	Laboratory Findings in Patients with Probable Dengue Diagnosis from an Endemic Area in Colombia in 2018. Viruses, 2021, 13, 1401.	3.3	2
5	Blood Meals With Active and Heat-Inactivated Serum Modifies the Gene Expression and Microbiome of Aedes albopictus. Frontiers in Microbiology, 2021, 12, 724345.	3.5	3
6	Antibody Responses Against Anopheles darlingi Immunogenic Peptides in Plasmodium Infected Humans. Frontiers in Cellular and Infection Microbiology, 2020, 10, 455.	3.9	8
7	Dengue Virus Infection of Aedes aegypti Alters Extracellular Vesicle Protein Cargo to Enhance Virus Transmission. International Journal of Molecular Sciences, 2020, 21, 6609.	4.1	10
8	Transcriptome of the Aedes aegypti Mosquito in Response to Human Complement Proteins. International Journal of Molecular Sciences, 2020, 21, 6584.	4.1	4
9	Venereal Transmission of Vesicular Stomatitis Virus by Culicoides sonorensis Midges. Pathogens, 2020, 9, 316.	2.8	15
10	One-step RT-qPCR assay for ZIKV RNA detection in Aedes aegypti samples: a protocol to study infection and gene expression during ZIKV infection. Parasites and Vectors, 2020, 13, 128.	2.5	8
11	Identification and Pilot Evaluation of Salivary Peptides from Anopheles albimanus as Biomarkers for Bite Exposure and Malaria Infection in Colombia. International Journal of Molecular Sciences, 2020, 21, 691.	4.1	13
12	lgG antibody response against Anopheles salivary gland proteins in asymptomatic Plasmodium infections in Narino, Colombia. Malaria Journal, 2020, 19, 42.	2.3	16
13	Differential Tick Salivary Protein Profiles and Human Immune Responses to Lone Star Ticks (Amblyomma americanum) From the Wild vs. a Laboratory Colony. Frontiers in Immunology, 2019, 10, 1996.	4.8	11
14	Dengue virus reduces expression of low-density lipoprotein receptor-related protein 1 to facilitate replication in Aedes aegypti. Scientific Reports, 2019, 9, 6352.	3.3	22
15	Quantification of Antibody-dependent Enhancement of the Zika Virus in Primary Human Cells. Journal of Visualized Experiments, 2019 , , .	0.3	1
16	Homologs of Human Dengue-Resistance Genes, FKBP1B and ATCAY, Confer Antiviral Resistance in Aedes aegypti Mosquitoes. Insects, 2019, 10, 46.	2.2	4
17	lgG1 and lgG4 antibodies against Aedes aegypti salivary proteins and risk for dengue infections. PLoS ONE, 2019, 14, e0208455.	2.5	20
18	The impact of immunity against mosquito salivary proteins on dengue transmission. Annals of Global Health, 2018, 81, 129.	2.0	0

#	Article	IF	CITATIONS
19	Vesicular Stomatitis Virus Transmission: A Comparison of Incriminated Vectors. Insects, 2018, 9, 190.	2.2	51
20	Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein Tsp29Fb. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6604-E6613.	7.1	86
21	Serosurvey of Human Antibodies Recognizing Aedes aegypti D7 Salivary Proteins in Colombia. Frontiers in Public Health, 2018, 6, 111.	2.7	25
22	Role of Mast Cells in Dengue Virus Pathogenesis. DNA and Cell Biology, 2017, 36, 423-427.	1.9	13
23	Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection. Viruses, 2017, 9, 159.	3.3	42
24	A relevant in vitro human model for the study of Zika virus antibody-dependent enhancement. Journal of General Virology, 2017, 98, 1702-1712.	2.9	29
25	Natural Mosquito-Pathogen Hybrid IgG4 Antibodies in Vector-Borne Diseases: A Hypothesis. Frontiers in Immunology, 2016, 7, 380.	4.8	5
26	Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection. PLoS Neglected Tropical Diseases, 2016, 10, e0004941.	3.0	70
27	A Brief Review of West Nile Virus Biology. Methods in Molecular Biology, 2016, 1435, 1-13.	0.9	21
28	Arbovirosis and potential transmission blocking vaccines. Parasites and Vectors, 2016, 9, 516.	2.5	24
29	A Role for Human Skin Mast Cells in Dengue Virus Infection and Systemic Spread. Journal of Immunology, 2016, 197, 4382-4391.	0.8	49
30	A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1898-1909.	2.4	36
31	Human C5a Protein Participates in the Mosquito Immune Response Against Dengue Virus. Journal of Medical Entomology, 2016, 53, 505-512.	1.8	14
32	An. gambiae gSG6-P1 evaluation as a proxy for human-vector contact in the Americas: a pilot study. Parasites and Vectors, 2015, 8, 533.	2.5	40
33	Concentraci \tilde{A}^3 n de los anticuerpos en contra de prote \tilde{A} nas de las gl \tilde{A}_i ndulas salivares de Aedes aegypti e historia de la exposici \tilde{A}^3 n al virus del dengue en residentes de una zona end \tilde{A} ©mica colombiana. Biomedica, 2015, 35, 572-81.	0.7	23
34	Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein. PLoS Pathogens, 2015, 11, e1005202.	4.7	49
35	Long-Lasting Permethrin-Impregnated Clothing Protects Against Mosquito Bites in Outdoor Workers. American Journal of Tropical Medicine and Hygiene, 2015, 93, 869-874.	1.4	35
36	Factors Associated With Peridomestic <i>Triatoma sanguisuga</i> (Hemiptera: Reduviidae) Presence in Southeastern Louisiana. Journal of Medical Entomology, 2014, 51, 1043-1050.	1.8	8

#	Article	IF	CITATIONS
37	Infection with dengue-2 virus alters proteins in naturally expectorated saliva of Aedes aegypti mosquitoes. Parasites and Vectors, 2014, 7, 252.	2.5	32
38	Use of Anti-Aedes aegypti Salivary Extract Antibody Concentration to Correlate Risk of Vector Exposure and Dengue Transmission Risk in Colombia. PLoS ONE, 2013, 8, e81211.	2.5	44
39	Genetic diversity in the merozoite surface protein 1 and 2 genes of Plasmodium falciparum from the Artibonite Valley of Haiti. Acta Tropica, 2012, 121, 6-12.	2.0	12
40	Antibody Response Against Anopheles albimanus (Diptera: Culicidae) Salivary Protein as a Measure of Mosquito Bite Exposure in Haiti. Journal of Medical Entomology, 2010, 47, 1156-1163.	1.8	39
41	Chloroquine-Resistant Haplotype <i>Plasmodium falciparum </i> Parasites, Haiti. Emerging Infectious Diseases, 2009, 15, 735-740.	4.3	42
42	Prevalence of Plasmodium falciparum Infection in Rainy Season, Artibonite Valley, Haiti, 2006. Emerging Infectious Diseases, 2007, 13, 1494-1496.	4.3	38
43	Effect of Solanum nudum Dunal (Solanaceae) steroids on hepatic trophozoites of Plasmodium vivax. Phytotherapy Research, 2006, 20, 267-273.	5.8	11
44	Prevention of sporogony of Plasmodium vivax in Anopheles albimanus by steroids of Solanum nudum Dunal (Solanaceae). Phytotherapy Research, 2006, 20, 444-447.	5.8	5
45	Comparación de los métodos Optimal y gota gruesa para el diagnóstico de malaria en una zona endémica sin epidemia Biomedica, 2002, 22, 466.	0.7	12
46	Dengue Virus-2 Infection Affects Fecundity and Elicits Specific Transcriptional Changes in the Ovaries of Aedes aegypti Mosquitoes. Frontiers in Microbiology, 0, 13, .	3.5	4