List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4576300/publications.pdf Version: 2024-02-01

DALIL A MOODE

#	Article	IF	CITATIONS
1	Field Observations of Intraspecific Agonistic Behavior of Two Crayfish Species, Orconectes rusticus and Orconectes virilis, in Different Habitats. Biological Bulletin, 2003, 205, 26-35.	1.8	173
2	Lobster Sniffing: Antennule Design and Hydrodynamic Filtering of Information in an Odor Plume. Science, 2001, 294, 1948-1951.	12.6	157
3	Chemical orientation of lobsters, homarus americanus, in turbulent odor plumes. Journal of Chemical Ecology, 1991, 17, 1293-1307.	1.8	147
4	INDIVIDUAL AND STATUS RECOGNITION IN THE CRAYFISH, ORCONECTES RUSTICUS: THE EFFECTS OF URINE RELEASE ON FIGHT DYNAMICS. Behaviour, 2001, 138, 137-153.	0.8	139
5	Chemical orientation to food by the crayfish Orconectes rusticus: influence of hydrodynamics. Animal Behaviour, 1999, 58, 953-963.	1.9	132
6	Temporal dynamics and communication of winner-effects in the crayfish, orconectes rusticus. Behaviour, 2003, 140, 805-825.	0.8	123
7	Odor landscapes and animal behavior: tracking odor plumes in different physical worlds. Journal of Marine Systems, 2004, 49, 55-64.	2.1	118
8	Recognition of Dominance Status By Chemoreception in the Red Swamp Crayfish, Procambarus clarkii. Journal of Chemical Ecology, 1999, 25, 781-794.	1.8	96
9	Previous Experiences Alter the Outcome of Aggressive Interactions Between Males in the Crayfish, Procambarus Clarkii. Marine and Freshwater Behaviour and Physiology, 2002, 35, 139-148.	0.9	86
10	Fluid dynamics and microscale chemical movement in the chemosensory appendages of the lobster, Homarus americanus. Chemical Senses, 1991, 16, 663-674.	2.0	73
11	Spatial distribution of odors in simulated benthic boundary layer flows. Journal of Chemical Ecology, 1994, 20, 255-279.	1.8	73
12	High resolution spatio-temporal analysis of aquatic chemical signals using microelectrochemical electrodes. Chemical Senses, 1989, 14, 829-840.	2.0	70
13	A Model of a Temporal Filter in Chemoreception to Extract Directional Information From a Turbulent Odor Plume. Biological Bulletin, 1988, 174, 355-363.	1.8	68
14	Prolonged exposure to social odours alters subsequent social interactions in crayfish (Orconectes) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
15	Physical constraints of chemoreception in foraging copepods. Limnology and Oceanography, 1999, 44, 166-177.	3.1	56
16	The Effects of the Herbicide Metolachlor on Agonistic Behavior in the Crayfish, Orconectes rusticus. Archives of Environmental Contamination and Toxicology, 2008, 55, 94-102.	4.1	53
17	Social spacing of crayfish in natural habitats: what role does dominance play?. Behavioral Ecology and Sociobiology, 2008, 62, 1119-1125.	1.4	51
18	The Smell of Success and Failure: the Role of Intrinsic and Extrinsic Chemical Signals on the Social Behavior of Crayfish. Integrative and Comparative Biology, 2005, 45, 650-657.	2.0	50

#	Article	IF	CITATIONS
19	Agonistic Behavior in Freshwater Crayfish. , 2007, , 90-114.		48
20	Foraging in complex odor landscapes: chemical orientation strategies during stimulation by conflicting chemical cues. Journal of the North American Benthological Society, 2001, 20, 211-222.	3.1	43
21	Control of information flow through the influence of mechanical and chemical signals during agonistic encounters by the crayfish, Orconectes rusticus. Animal Behaviour, 2005, 70, 485-496.	1.9	43
22	Orientation in complex chemical landscapes: Spatial arrangement of chemical sources influences crayfish foodâ€finding efficiency in artificial stream. Limnology and Oceanography, 2001, 46, 238-247.	3.1	42
23	Effects of the herbicide metolachlor on the perception of chemical stimuli by Orconectes rusticus. Journal of the North American Benthological Society, 2002, 21, 457-467.	3.1	40
24	Bilateral and Unilateral Antennal Lesions Alter Orientation Abilities of the Crayfish, Orconectes rusticus. Chemical Senses, 2002, 27, 49-55.	2.0	40
25	Spatial Arrangement of Odor Sources Modifies the Temporal Aspects of Crayfish Search Strategies. Journal of Chemical Ecology, 2004, 30, 501-517.	1.8	39
26	Field Observations of Agonism in the Crayfish, <i>Orconectes rusticus</i> : Shelter Use in a Natural Environment. Ethology, 2007, 113, 1192-1201.	1.1	38
27	The Influence of Dominance on Shelter Preference and Eviction Rates in the Crayfish, Orconectes rusticus. Ethology, 2008, 114, 351-360.	1.1	38
28	The use of the major chelae by reproductive male crayfish (Orconectes rusticus) for discrimination of female odours. Behaviour, 2006, 143, 713-731.	0.8	36
29	Habitat-specific Signal Structure for Olfaction: An Example from Artificial Streams. Journal of Chemical Ecology, 2000, 26, 565-584.	1.8	34
30	Sublethal copper toxicity impairs chemical orientation in the crayfish, Orconectes rusticus. Ecotoxicology and Environmental Safety, 2015, 113, 369-377.	6.0	31
31	The Effects of Sublethal Levels of 2,4-Dichlorophenoxyacetic Acid Herbicide (2,4-D) on Feeding Behaviors of the Crayfish O. rusticus. Archives of Environmental Contamination and Toxicology, 2014, 67, 234-244.	4.1	27
32	Changes in Odour Intermittency Influence the Success and Search Behaviour During Orientation in the Crayfish (Orconectes Rusticus). Marine and Freshwater Behaviour and Physiology, 2003, 36, 97-110.	0.9	26
33	Mimicking natural systems: Changes in behavior as a result of dynamic exposure to naproxen. Ecotoxicology and Environmental Safety, 2017, 135, 347-357.	6.0	26
34	Male–Female Communication in the Crayfish <i>Orconectes rusticus</i> : The Use of Urinary Signals in Reproductive and Nonâ€Reproductive Pairings. Ethology, 2007, 113, 740-754.	1.1	25
35	Atmospheric CO2 enrichment alters leaf detritus: impacts on foraging decisions of crayfish (Orconectes virilis). Journal of the North American Benthological Society, 2003, 22, 410-422.	3.1	24
36	Context-specific behavior: crayfish size influences crayfish–fish interactions. Journal of the North American Benthological Society, 2000, 19, 344-351.	3.1	23

#	Article	IF	CITATIONS
37	Feeding in fear: Indirect effects of predatory fish on macrophyte communities mediated by altered crayfish foraging behaviour. Freshwater Biology, 2018, 63, 1523-1533.	2.4	22
38	The Role of Chemical Signals in the Social Behavior of Crayfish. Chemical Senses, 2005, 30, i305-i306.	2.0	21
39	The impacts of flow on chemical communication strategies and fight dynamics of crayfish. Marine and Freshwater Behaviour and Physiology, 2006, 39, 245-258.	0.9	21
40	Elevated CO2alters leaf-litter-derived dissolved organic carbon: effects on stream periphyton and crayfish feeding preference. Journal of the North American Benthological Society, 2007, 26, 663-672.	3.1	21
41	Effects of ontogeny and odors on behavior: The influence of crayfish size and fish odors on crayfish movement. Marine and Freshwater Behaviour and Physiology, 1999, 33, 35-50.	0.9	20
42	Evidence for assessment disappears in mixed-sex contests of the crayfish, Orconectes virilis. Behaviour, 2015, 152, 995-1018.	0.8	20
43	The influence of reproductive state on the agonistic interactions between male and female crayfish (Orconectes rusticus). Behaviour, 2010, 147, 1309-1325.	0.8	19
44	Real Exposure: Field Measurement of Chemical Plumes in Headwater Streams. Archives of Environmental Contamination and Toxicology, 2014, 67, 413-425.	4.1	18
45	The role of the major chelae in the localization and sampling of female odours by male crayfish, Orconectes rusticus (Girard, 1852). Crustaceana, 2009, 82, 653-668.	0.3	16
46	Chemical Orientation Strategies of the Crayfish are Influenced by the Hydrodynamics of their Native Environment. American Midland Naturalist, 2015, 173, 17-29.	0.4	15
47	Exposure Through Runoff and Ground Water Contamination Differentially Impact Behavior and Physiology of Crustaceans in Fluvial Systems. Archives of Environmental Contamination and Toxicology, 2018, 75, 436-448.	4.1	15
48	Chemosensory signals in stream habitats: implications for ecological interactions. Journal of the North American Benthological Society, 2009, 28, 560-571.	3.1	14
49	Comparative Homing Behaviors in Two Species of Crayfish, <i>Fallicambarus Fodiens</i> and <i>Orconectes Rusticus</i> . Ethology, 2015, 121, 775-784.	1.1	14
50	Sensory signals and the reaction space in predator–prey interactions. Hydrobiologia, 2018, 816, 137-152.	2.0	14
51	Antennal morphology as a physical filter of olfaction: temporal tuning of the antennae of the honeybee, Apis mellifera. Journal of Insect Physiology, 1998, 44, 677-684.	2.0	13
52	Chemical orientation of brown bullheads, Ameiurus nebulosus, under different flow conditions. , 2001, 27, 2301-2318.		13
53	Olfactory Sampling Recovery Following Sublethal Copper Exposure in the Rusty Crayfish, Orconectes rusticus. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 441-446.	2.7	13
54	Effects of CO2-altered detritus on growth and chemically mediated decisions in crayfish (Procambarus clarkii). Journal of the North American Benthological Society, 2005, 24, 330-345.	3.1	12

#	Article	IF	CITATIONS
55	Predator recognition of chemical cues in crayfish: dietÂand experience influence the ability toÂdetectÂpredationÂthreats. Behaviour, 2018, 155, 505-530.	0.8	11
56	Behavioral decisions in sensory landscapes: crayfish use chemical signals to make habitat use choices. Journal of Crustacean Biology, 2014, 34, 559-564.	0.8	10
57	The Degree of Impairment of Foraging in Crayfish (Orconectes virilis) due to Insecticide Exposure is Dependent upon Turbulence Dispersion. Archives of Environmental Contamination and Toxicology, 2017, 72, 281-293.	4.1	10
58	Linking phenotypic correlations from a diverse set of laboratory tests to field behaviors in the crayfish, <i>Orconectes virilis</i> . Ethology, 2018, 124, 311-330.	1.1	9
59	Scaling to the Organism: An Innovative Model of Dynamic Exposure Hotspots in Stream Systems. Archives of Environmental Contamination and Toxicology, 2018, 74, 372-394.	4.1	9
60	The role of sensory modalities in producing nonconsumptive effects for a crayfish–bass predator–prey system. Canadian Journal of Zoology, 2018, 96, 680-691.	1.0	9
61	Analysis and description of burrow structure in four species of freshwater crayfishes (Decapoda:) Tj ETQq1 1 0.7 Biology, 2019, 39, 711-719.	84314 rgB 0.8	T /Overlock 1 9
62	The intensity and spectrum of artificial light at night alters crayfish interactions. Marine and Freshwater Behaviour and Physiology, 2019, 52, 131-150.	0.9	9
63	Big and bad: how relative predator size and dietary information influence rusty crayfish (Faxonius) Tj ETQq1 10.	784314 rgl 1.0	BT _g /Overlock
64	The impact of odor and ambient flow speed on the kinematics of the crayfish antennular flick: implications for sampling turbulent odor plumes. Journal of Crustacean Biology, 2013, 33, 772-783.	0.8	8
65	Behaviorally-selective chemoreceptor lesions reveal two different chemically mediated orientation strategies in the rusty crayfish, Orconectes rusticus. Journal of Crustacean Biology, 2015, 35, 753-762.	0.8	8
66	Exposure to Sublethal Ammonia Concentrations Alters the Duration and Intensity of Agonistic Interactions in the Crayfish, Orconectes rusticus. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 189-194.	2.7	8
67	Exposure paradigm of fluoxetine impacted the Faxonius virilis agonistic behavior differently. Science of the Total Environment, 2020, 699, 134300.	8.0	8
68	An electrical circuit model of chemoreceptor cells based on adaptation and disadaptation time constants: implications for temporal filtering. Materials Science and Engineering C, 1999, 7, 149-160.	7.3	7
69	Running away or running to? Do prey make decisions solely based on the landscape of fear or do they also include stimuli from a landscape of safety?. Journal of Experimental Biology, 2021, 224, .	1.7	7
70	The Effects of Biodiesel and Crude Oil on the Foraging Behavior of Rusty Crayfish, Orconectes rusticus. Archives of Environmental Contamination and Toxicology, 2015, 69, 557-565.	4.1	6
71	Fineâ€ŧuned responses to chemical landscapes: crayfish use predator odors to assess threats based on relative size ratios. Ecosphere, 2020, 11, e03188.	2.2	6
72	Spatial, but not temporal, aspects of orientation are controlled by the fine-scale distribution of chemical cues in turbulent odor plumes. Journal of Experimental Biology, 2021, 224, .	1.7	6

#	Article	IF	CITATIONS
73	Chapter 6. Crayfish: An Experimental Model for Examining Exposure to Environmental Contamination. Issues in Toxicology, 2017, , 124-156.	0.1	6
74	Fine-Scale Chemical Exposure Differs in Point and Nonpoint Source Plumes. Archives of Environmental Contamination and Toxicology, 2015, 68, 729-744.	4.1	5
75	Dissolved organic matter from elevated-CO ₂ detritus and its impact on the orientation of crayfish (<i>Orconectes virilis</i>) to a fish food source. Journal of the North American Benthological Society, 2009, 28, 638-648.	3.1	4
76	The Effects of Bt Corn on Rusty Crayfish (Orconectes Rusticus) Growth and Survival. Archives of Environmental Contamination and Toxicology, 2014, 67, 436-443.	4.1	4
77	Express yourself: Individuals with bold personalities exhibit increased behavioral sensitivity to dynamic herbicide exposure. Ecotoxicology and Environmental Safety, 2019, 179, 272-281.	6.0	4
78	Variable Background Flow on Aquatic Toxicant Exposure Alters Foraging Patterns on Crayfish. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 663-669.	2.7	3
79	Serotonergic-linked alterations of aggression of the crayfish. Marine and Freshwater Behaviour and Physiology, 2020, 53, 215-229.	0.9	3
80	Homing behavior following shelter displacement in two crayfishes, Creaserinus fodiens (Cottle, 1863) and Faxonius rusticus (Girard, 1852) (Decapoda: Astacidea: Cambaridae). Journal of Crustacean Biology, 2018, 38, 531-538.	0.8	2
81	The role of social and/or ecological contexts influences assessment strategy use in Tilapia. Ethology, 2019, 125, 821-831.	1.1	2
82	Bt Proteins Exacerbate Negative Growth Effects in Juvenile Rusty (F. rusticus) Crayfish Fed Corn Diet. Archives of Environmental Contamination and Toxicology, 2019, 77, 452-460.	4.1	2
83	Examination of Homing Behaviors in Two Species of Crayfish Following Translational Displacements. Integrative Organismal Biology, 2019, 1, obz008.	1.8	2
84	Mapping Dynamic Exposure: Constructing GIS Models of Spatiotemporal Heterogeneity in Artificial Stream Systems. Archives of Environmental Contamination and Toxicology, 2020, 78, 230-244.	4.1	2
85	Parasites differentially impact crayfish personality in different contexts. Behaviour, 2021, 158, 921-943.	0.8	2
86	Comparative analysis of the boundary layer filtering of odor signals in the amblypygid (whip spider) species Paraphrynus laevifrons and Phrynus marginemaculatus. Journal of Insect Physiology, 2020, 120, 103984.	2.0	0
87	Influence of amino acid concentrations on foraging and feeding in the rusty crayfish <i>Faxonius rusticus</i> (Girard, 1852) (Decapoda: Astacidea: Cambaridae), assayed in flow-through mesocosms. Journal of Crustacean Biology, 2022, 42, .	0.8	0