
PaweÅ, Dydio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/45760/publications.pdf Version: 2024-02-01

Ρλιμεά Ονοιο

#	Article	IF	CITATIONS
1	Recent Trends in Group 9 Catalyzed C–H Borylation Reactions: Different Strategies To Control Site-, Regio-, and Stereoselectivity. Synthesis, 2022, 54, 3482-3498.	2.3	9
2	lsoselective Hydroformylation of Propylene by Iodideâ€Assisted Palladium Catalysis. Angewandte Chemie, 2022, 134, .	2.0	0
3	Isoselective Hydroformylation of Propylene by Iodideâ€Assisted Palladium Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
4	Density Functional Theory Studies of the Catalyst Structure–Activity and Selectivity Relationships in Rh(I)-Catalyzed Transfer C–H Borylation of Alkenes. Organometallics, 2022, 41, 1649-1658.	2.3	0
5	Challenges and Opportunities in Multicatalysis. ACS Catalysis, 2021, 11, 3891-3915.	11.2	149
6	Multicatalytic Approach to One-Pot Stereoselective Synthesis of Secondary Benzylic Alcohols. Organic Letters, 2021, 23, 3502-3506.	4.6	11
7	Enantioselective α-Arylation of Primary Alcohols under Sequential One-Pot Catalysis. Journal of Organic Chemistry, 2021, 86, 9253-9262.	3.2	6
8	Palladium atalyzed Hydroformylation of Alkenes and Alkynes. European Journal of Organic Chemistry, 2021, 2021, 5985-5997.	2.4	15
9	Teaching natural enzymes new radical tricks. Science, 2021, 374, 1558-1559.	12.6	1
10	Binuclear Pd(I)–Pd(I) Catalysis Assisted by Iodide Ligands for Selective Hydroformylation of Alkenes and Alkynes. Journal of the American Chemical Society, 2020, 142, 18251-18265.	13.7	39
11	Effector responsive hydroformylation catalysis. Chemical Science, 2019, 10, 7389-7398.	7.4	16
12	Dual-catalytic transition metal systems for functionalization of unreactive sites of molecules. Nature Catalysis, 2019, 2, 114-122.	34.4	66
13	The Influence of Binding Site Geometry on Anionâ€Binding Selectivity: A Case Study of Macrocyclic Receptors Built on the Azulene Skeleton. Chemistry - A European Journal, 2018, 24, 11683-11692.	3.3	18
14	Chemoselective, Enzymatic C–H Bond Amination Catalyzed by a Cytochrome P450 Containing an Ir(Me)-PIX Cofactor. Journal of the American Chemical Society, 2017, 139, 1750-1753.	13.7	147
15	Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes. ACS Central Science, 2017, 3, 302-308.	11.3	85
16	Cofactor-Controlled Chirality of Tropoisomeric Ligand. Organometallics, 2016, 35, 1956-1963.	2.3	26
17	A hybrid macrocyclic anion receptor exploiting the pyrrole-2,5-diacetamide unit. RSC Advances, 2016, 6, 41568-41571.	3.6	7
18	Diamidonaphthalenodipyrrole-derived fluorescent sensors for anions. Sensors and Actuators B: Chemical, 2016, 237, 621-627.	7.8	11

PaweÅ, Dydio

#	Article	IF	CITATIONS
19	Azuleneâ€Based Macrocyclic Receptors for Recognition and Sensing of Phosphate Anions. Chemistry - A European Journal, 2016, 22, 17673-17680.	3.3	35
20	Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature, 2016, 534, 534-537.	27.8	360
21	Supramolecular control of selectivity in transition-metal catalysis through substrate preorganization. Chemical Science, 2014, 5, 2135-2145.	7.4	185
22	Scalable and chromatography-free synthesis of 2-(2-formylalkyl)arenecarboxylic acid derivatives through the supramolecularly controlled hydroformylation of vinylarene-2-carboxylic acids. Nature Protocols, 2014, 9, 1183-1191.	12.0	13
23	Beyond Classical Reactivity Patterns: Hydroformylation of Vinyl and Allyl Arenes to Valuable β- and γ-Aldehyde Intermediates Using Supramolecular Catalysis. Journal of the American Chemical Society, 2014, 136, 8418-8429.	13.7	61
24	Precise Supramolecular Control of Selectivity in the Rh-Catalyzed Hydroformylation of Terminal and Internal Alkenes. Journal of the American Chemical Society, 2013, 135, 10817-10828.	13.7	82
25	Dynamic Combinatorial Chemistry in Chemical Catalysis. Israel Journal of Chemistry, 2013, 53, 61-74.	2.3	37
26	Supramolecular Control of Selectivity in Hydroformylation of Vinyl Arenes: Easy Access to Valuable βâ€Aldehyde Intermediates. Angewandte Chemie - International Edition, 2013, 52, 3878-3882.	13.8	70
27	Selective Isomerization–Hydroformylation Sequence: A Strategy to Valuable α-Methyl-Branched Aldehydes from Terminal Olefins. ACS Catalysis, 2013, 3, 2939-2942.	11.2	25
28	7,7′â€Diaminoâ€2,2′â€diindolylmethane: A Building Block for Highly Efficient and Selective Anion Receptors—Studies in Solution and in the Solid State. Chemistry - A European Journal, 2012, 18, 13686-13701.	3.3	20
29	"Cofactor―Controlled Enantioselective Catalysis. Journal of the American Chemical Society, 2011, 133, 17176-17179.	13.7	111
30	Amide- and urea-functionalized pyrroles and benzopyrroles as synthetic, neutral anion receptors. Chemical Society Reviews, 2011, 40, 2971.	38.1	222
31	Remote Supramolecular Control of Catalyst Selectivity in the Hydroformylation of Alkenes. Angewandte Chemie - International Edition, 2011, 50, 396-400.	13.8	139
32	Benzopyrrole derivatives as effective anion receptors in highly competitive solvents. Pure and Applied Chemistry, 2011, 83, 1543-1554.	1.9	11
33	7,7′-Diureido-2,2′-diindolylmethanes: Anion Receptors Effective in a Highly Competitive Solvent, Methanol. Organic Letters, 2010, 12, 1076-1078.	4.6	53
34	Bishydrazide Derivatives of Isoindoline as Simple Anion Receptors. Journal of Organic Chemistry, 2009, 74, 1525-1530.	3.2	38
35	Anion receptors based on 7,7′-diamido-2,2′-diindolylmethane. Chemical Communications, 2009, , 4560.	4.1	56
36	Synthesis, structure and the binding properties of the amide-based anion receptors derived from 1H-indole-7-amine Tetrahedron 2008 64 568-574	1.9	41