
Tatyana V Reshetenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4574831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon capacious Ni-Cu-Al2O3 catalysts for high-temperature methane decomposition. Applied Catalysis A: General, 2003, 247, 51-63.	4.3	214
2	Iron-containing catalysts of methane decomposition: accumulation of filamentous carbon. Applied Catalysis A: General, 2002, 228, 53-63.	4.3	136
3	Systematic study of back pressure and anode stoichiometry effects on spatial PEMFC performance distribution. Electrochimica Acta, 2011, 56, 8700-8710.	5.2	105
4	Cathode structure optimization for air-breathing DMFC by application of pore-forming agents. Journal of Power Sources, 2007, 171, 433-440.	7.8	53
5	Study of low concentration CO poisoning of Pt anode in a proton exchange membrane fuel cell using spatial electrochemical impedance spectroscopy. Journal of Power Sources, 2014, 269, 344-362.	7.8	53
6	Performance of a direct methanol fuel cell (DMFC) at low temperature: Cathode optimization. Journal of Power Sources, 2006, 160, 925-932.	7.8	48
7	A segmented cell approach for studying the effects of serpentine flow field parameters on PEMFC current distribution. Electrochimica Acta, 2013, 88, 571-579.	5.2	48
8	Mesoporous textured Fe-N-C electrocatalysts as highly efficient cathodes for proton exchange membrane fuel cells. Journal of Power Sources, 2022, 520, 230819.	7.8	46
9	The Effect of the Anode Loading and Method of MEA Fabrication on DMFC Performance. Fuel Cells, 2007, 7, 238-245.	2.4	45
10	Application of a segmented cell setup to detect pinhole and catalyst loading defects in proton exchange membrane fuel cells. Electrochimica Acta, 2012, 76, 16-25.	5.2	44
11	Modification of cathode structure by introduction of CNT for air-breathing DMFC. Electrochimica Acta, 2008, 53, 3043-3049.	5.2	43
12	Spatial proton exchange membrane fuel cell performance under carbon monoxide poisoning at a low concentration using a segmented cell system. Journal of Power Sources, 2012, 218, 412-423.	7.8	39
13	PEM Fuel Cell Characterization by Means of the Physical Model for Impedance Spectra. Journal of the Electrochemical Society, 2015, 162, F627-F633.	2.9	37
14	Study of acetylene poisoning of Pt cathode on proton exchange membrane fuel cell spatial performance using a segmented cell system. Journal of Power Sources, 2015, 287, 401-415.	7.8	35
15	Separation Method for Oxygen Mass Transport Coefficient in Gas and Ionomer Phases in PEMFC GDE. Journal of the Electrochemical Society, 2014, 161, F1089-F1100.	2.9	34
16	Comparison of Two Physical Models for Fitting PEM Fuel Cell Impedance Spectra Measured at a Low Air Flow Stoichiometry. Journal of the Electrochemical Society, 2016, 163, F238-F246.	2.9	34
17	Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants. Journal of Power Sources, 2016, 324, 556-571.	7.8	34
18	Effects of local variations of the gas diffusion layer properties on PEMFC performance using a segmented cell system. Electrochimica Acta, 2012, 80, 368-376.	5.2	32

TATYANA V RESHETENKO

#	Article	IF	CITATIONS
19	Systematic studies of the gas humidification effects on spatial PEMFC performance distributions. Electrochimica Acta, 2012, 69, 220-229.	5.2	32
20	Study of the acetonitrile poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system. Journal of Power Sources, 2015, 293, 929-940.	7.8	30
21	Variation of PEM Fuel Cell Physical Parameters with Current: Impedance Spectroscopy Study. Journal of the Electrochemical Society, 2016, 163, F1100-F1106.	2.9	30
22	Electrochemical analysis of polymer electrolyte membrane fuel cell operated with dry-air feed. Journal of Power Sources, 2009, 193, 515-522.	7.8	29
23	Study of degradation and spatial performance of low Pt-loaded proton exchange membrane fuel cells under exposure to sulfur dioxide in an oxidant stream. Journal of Power Sources, 2020, 458, 228032.	7.8	26
24	Design of PGM-free cathodic catalyst layers for advanced PEM fuel cells. Applied Catalysis B: Environmental, 2022, 312, 121424.	20.2	26
25	Study of the aromatic hydrocarbons poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system. Journal of Power Sources, 2016, 333, 237-246.	7.8	25
26	Impedance Spectroscopy Study of the PEM Fuel Cell Cathode with Nonuniform Nafion Loading. Journal of the Electrochemical Society, 2017, 164, E3016-E3021.	2.9	25
27	Multianalytical Study of the PTFE Content Local Variation of the PEMFC Gas Diffusion Layer. Journal of the Electrochemical Society, 2013, 160, F1305-F1315.	2.9	23
28	A Model for Extraction of Spatially Resolved Data from Impedance Spectrum of a PEM Fuel Cell. Journal of the Electrochemical Society, 2018, 165, F291-F296.	2.9	23
29	Analysis of alkaline exchange membrane fuel cells performance at different operating conditions using DC and AC methods. Journal of Power Sources, 2018, 375, 185-190.	7.8	22
30	Poisoning effects of sulfur dioxide in an air stream on spatial proton exchange membrane fuel cell performance. Journal of Power Sources, 2019, 438, 226949.	7.8	22
31	Impedance Spectroscopy Characterization of Oxygen Transport in Low– and High–Pt Loaded PEM Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F1633-F1640.	2.9	21
32	Distribution of Relaxation Times: A Tool for Measuring Oxygen Transport Resistivity of a Low–Pt PEM Fuel Cell Cathode. Journal of the Electrochemical Society, 2020, 167, 144505.	2.9	21
33	Impact of a gas diffusion layer's structural and textural properties on oxygen mass transport resistance in the cathode and performance of proton exchange membrane fuel cells. Electrochimica Acta, 2021, 371, 137752.	5.2	20
34	Electron and proton conductivity of Fe-N-C cathodes for PEM fuel cells: A model-based electrochemical impedance spectroscopy measurement. Electrochemistry Communications, 2020, 118, 106795.	4.7	19
35	Effects of local gas diffusion layer gas permeability variations on spatial proton exchange membrane fuel cells performance. Journal of Power Sources, 2013, 241, 597-607.	7.8	17
36	Effects of propylene, methyl methacrylate and isopropanol poisoning on spatial performance of a proton exchange membrane fuel cell. Journal of Power Sources, 2018, 378, 216-224.	7.8	17

TATYANA V RESHETENKO

#	Article	IF	CITATIONS
37	On the distribution of local current density along a PEM fuel cell cathode channel. Electrochemistry Communications, 2019, 101, 35-38.	4.7	17
38	On the Origin of High Frequency Impedance Feature in a PEM Fuel Cell. Journal of the Electrochemical Society, 2019, 166, F1253-F1257.	2.9	17
39	Lithium-Ion Cell Fault Detection by Single-Point Impedance Diagnostic and Degradation Mechanism Validation for Series-Wired Batteries Cycled at 0 °C. Energies, 2018, 11, 834.	3.1	16
40	Understanding the distribution of relaxation times of a low–Pt PEM fuel cell. Electrochimica Acta, 2021, 391, 138954.	5.2	16
41	Nafion film transport properties in a low-Pt PEM fuel cell: impedance spectroscopy study. RSC Advances, 2019, 9, 38797-38806.	3.6	15
42	Spatial proton exchange membrane fuel cell performance under bromomethane poisoning. Journal of Power Sources, 2017, 342, 135-147.	7.8	13
43	Impedance Spectroscopy Characterization of PEM Fuel Cells with Fe-N-C-Based Cathodes. Journal of the Electrochemical Society, 2019, 166, F653-F660.	2.9	11
44	A Model for Local Impedance: Validation of the Model for Local Parameters Recovery from a Single Spectrum of PEM Fuel Cell. Journal of the Electrochemical Society, 2019, 166, F431-F439.	2.9	11
45	The Effect of Proton Conductivity of Fe–N–C–Based Cathode on PEM Fuel cell Performance. Journal of the Electrochemical Society, 2020, 167, 084501.	2.9	10
46	Determination of oxygen mass transport resistance in proton exchange membrane fuel cells with an open flow field architecture. Electrochimica Acta, 2021, 387, 138529.	5.2	10
47	Spatial performance of high- and low-Pt loaded proton exchange membrane fuel cells under cathode exposure to nitrogen dioxide. Journal of Power Sources, 2021, 492, 229657.	7.8	8
48	Influence of Air Impurities on the Performance of Nanostructured PEMFC Catalysts. , 2018, , 407-441.		4
49	Exploration of operating conditions on oxygen mass transport resistance and performance of PEM fuel cells: Effects of inlet gas humidification. Electrochemical Science Advances, 0, , e2100134.	2.8	2
50	Identification of Gas Diffusion Layer PTFE Content Local Anomalies Using a Segmented Cell System. ECS Transactions, 2011, 41, 539-548.	0.5	1
51	Impedance Spectroscopy Measurements of Ionomer Film Oxygen Transport Resistivity in Operating Low-Pt PEM Fuel Cell. Membranes, 2021, 11, 985.	3.0	1
52	Modern Fuel Cell Testing Laboratory. , 2017, , 611-647.		0
53	Two States of the Cathode Catalyst Layer Operation in a PEM Fuel Cell. Journal of the Electrochemical Society, 2018, 165, F821-F826.	2.9	0
54	How Critical Is Avoiding Critical Metals in Electrocatalysis? Lessons Learned from PGM-Free ORR Catalysts Development. ECS Meeting Abstracts, 2020, MA2020-02, 2280-2280.	0.0	0

#	Article	IF	CITATIONS
55	Effect of Cathode Proton Conductivity on PGM-free PEM Fuel Cell Performance. ECS Meeting Abstracts, 2020, MA2020-02, 2686-2686.	0.0	0
56	Interplay between PEMFC Performance, Gas Diffusion Electrode Structure and Mass Transport Properties. ECS Meeting Abstracts, 2020, MA2020-02, 2148-2148.	0.0	0
57	Comprehensive Evaluation of Mass Transport Resistance in Pemfcs with Open Flow Field and Land/Channel Architectures. ECS Meeting Abstracts, 2021, MA2021-02, 1079-1079.	0.0	Ο